Adaptive Interaction Fusion Networks for Fake News Detection

被引:13
|
作者
Wu, Lianwei [1 ]
Rao, Yuan [2 ]
机构
[1] Xi An Jiao Tong Univ, Software Sch, Lab Social Intelligence & Complex Data Proc, Xian, Peoples R China
[2] Xi An Jiao Tong Univ, Shannxi Joint Key Lab, Xian, Peoples R China
关键词
D O I
10.3233/FAIA200348
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The majority of existing methods for fake news detection universally focus on learning and fusing various features for detection. However, the learning of various features is independent, which leads to a lack of cross-interaction fusion between features on social media, especially between posts and comments. Generally, in fake news, there are emotional associations and semantic conflicts between posts and comments. How to represent and fuse the cross-interaction between both is a key challenge. In this paper, we propose Adaptive Interaction Fusion Networks (AIFN) to fulfill cross-interaction fusion among features for fake news detection. In AIFN, to discover semantic conflicts, we design gated adaptive interaction networks (GAIN) to capture adaptively similar semantics and conflicting semantics between posts and comments. To establish feature associations, we devise semantic-level fusion self-attention networks (SFSN) to enhance semantic correlations and fusion among features. Extensive experiments on two real-world datasets, i.e., RumourEval and PHEME, demonstrate that AIFN achieves the state-of-the-art performance and boosts accuracy by more than 2.05% and 1.90%, respectively.
引用
收藏
页码:2220 / 2227
页数:8
相关论文
共 50 条
  • [21] A fusion of BERT, machine learning and manual approach for fake news detection
    Mohammed A. Al Ghamdi
    Muhammad Shahid Bhatti
    Atif Saeed
    Zeeshan Gillani
    Sultan H. Almotiri
    Multimedia Tools and Applications, 2024, 83 : 30095 - 30112
  • [22] Sentiment Analysis for Fake News Detection by Means of Neural Networks
    Kula, Sebastian
    Choras, Michal
    Kozik, Rafal
    Ksieniewicz, Pawel
    Wozniak, Michal
    COMPUTATIONAL SCIENCE - ICCS 2020, PT IV, 2020, 12140 : 653 - 666
  • [23] SENTIMENT AWARE FAKE NEWS DETECTION ON ONLINE SOCIAL NETWORKS
    Ajao, Oluwaseun
    Bhowmik, Deepayan
    Zargari, Shahrzad
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 2507 - 2511
  • [24] Multimodal Fake News Detection Based on Contrastive Learning and Similarity Fusion
    Li, Yan
    Jia, Kaidi
    Wang, Qiyuan
    IEEE ACCESS, 2024, 12 : 155351 - 155364
  • [25] Amharic Fake News Detection on Social Media Using Feature Fusion
    Worku, Menbere Hailu
    Woldeyohannis, Michael Melese
    Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 2022, 411 LNICST : 468 - 479
  • [26] A Comparative Analysis of Graph Neural Networks for Fake News Detection
    Harby, Ahmed A.
    Zutkernine, Farhana
    2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 1215 - 1222
  • [27] A fusion of BERT, machine learning and manual approach for fake news detection
    Al Ghamdi, Mohammed A.
    Bhatti, Muhammad Shahid
    Saeed, Atif
    Gillani, Zeeshan
    Almotiri, Sultan H.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (10) : 30095 - 30112
  • [28] MFIR: Multimodal fusion and inconsistency reasoning for explainable fake news detection
    Wu, Lianwei
    Long, Yuzhou
    Gao, Chao
    Wang, Zhen
    Zhang, Yanning
    INFORMATION FUSION, 2023, 100
  • [29] Semantic-enhanced multimodal fusion network for fake news detection
    Li, Shuo
    Yao, Tao
    Li, Saifei
    Yan, Lianshan
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) : 12235 - 12251
  • [30] THE COMBINATION OF CONVOLUTION NEURAL NETWORKS AND DEEP NEURAL NETWORKS FOR FAKE NEWS DETECTION
    Jawad, Zainab A.
    Obaid, Ahmed J.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2023, 18 (01): : 814 - 826