Adaptive Interaction Fusion Networks for Fake News Detection

被引:13
|
作者
Wu, Lianwei [1 ]
Rao, Yuan [2 ]
机构
[1] Xi An Jiao Tong Univ, Software Sch, Lab Social Intelligence & Complex Data Proc, Xian, Peoples R China
[2] Xi An Jiao Tong Univ, Shannxi Joint Key Lab, Xian, Peoples R China
关键词
D O I
10.3233/FAIA200348
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The majority of existing methods for fake news detection universally focus on learning and fusing various features for detection. However, the learning of various features is independent, which leads to a lack of cross-interaction fusion between features on social media, especially between posts and comments. Generally, in fake news, there are emotional associations and semantic conflicts between posts and comments. How to represent and fuse the cross-interaction between both is a key challenge. In this paper, we propose Adaptive Interaction Fusion Networks (AIFN) to fulfill cross-interaction fusion among features for fake news detection. In AIFN, to discover semantic conflicts, we design gated adaptive interaction networks (GAIN) to capture adaptively similar semantics and conflicting semantics between posts and comments. To establish feature associations, we devise semantic-level fusion self-attention networks (SFSN) to enhance semantic correlations and fusion among features. Extensive experiments on two real-world datasets, i.e., RumourEval and PHEME, demonstrate that AIFN achieves the state-of-the-art performance and boosts accuracy by more than 2.05% and 1.90%, respectively.
引用
收藏
页码:2220 / 2227
页数:8
相关论文
共 50 条
  • [1] Multimodal Feature Adaptive Fusion for Fake News Detection
    Wang, Teng
    Zhang, Dawei
    Wang, Liqin
    Dong, Yongfeng
    Computer Engineering and Applications, 2024, 60 (13) : 102 - 111
  • [2] Multimodal fake news detection via progressive fusion networks
    Jing, Jing
    Wu, Hongchen
    Sun, Jie
    Fang, Xiaochang
    Zhang, Huaxiang
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (01)
  • [3] Multimodal Fusion with Co-Attention Networks for Fake News Detection
    Wu, Yang
    Zhan, Pengwei
    Zhang, Yunjian
    Wang, Liming
    Xu, Zhen
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 2560 - 2569
  • [4] FMFN: Fine-Grained Multimodal Fusion Networks for Fake News Detection
    Wang, Jingzi
    Mao, Hongyan
    Li, Hongwei
    APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [5] MIGCL: Fake news detection with multimodal interaction and graph contrastive learning networks
    Cui, Wei
    Shang, Mingsheng
    APPLIED INTELLIGENCE, 2025, 55 (01)
  • [6] Cross-Modal Fine-Grained Interaction Fusion in Fake News Detection
    Che, Zhanbin
    Cui, GuangBo
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (05) : 945 - 956
  • [7] Fake News Detection on Social Networks: A Survey
    Shen, Yanping
    Liu, Qingjie
    Guo, Na
    Yuan, Jing
    Yang, Yanqing
    APPLIED SCIENCES-BASEL, 2023, 13 (21):
  • [8] Multimodal Data Fusion Framework For Fake News Detection
    Athira, A. B.
    Tiwari, Abhishek
    Kumar, S. D. Madhu
    Chacko, Anu Mary
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [9] Multi-Modal fake news Detection on Social Media with Dual Attention Fusion Networks
    Yang, Haitian
    Zhao, Xuan
    Sun, Degang
    Wang, Yan
    Zhu, He
    Ma, Chao
    Huang, Weiqing
    26TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2021), 2021,
  • [10] Enhancing Few-Shot Multi-modal Fake News Detection Through Adaptive Fusion
    Ouyang, Qiang
    Lin, Nankai
    Zhou, Yongmei
    Yang, Aimin
    Zhou, Dong
    WEB AND BIG DATA, APWEB-WAIM 2024, PT IV, 2024, 14964 : 432 - 447