Asymptotics of eigenvalue clusters for Schrodinger operators on the Sierpinski gasket

被引:8
|
作者
Okoudjou, Kasso A. [1 ]
Strichartz, Robert S. [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
关键词
analysis on fractals; Schrodinger operators; Sierpinski gasket;
D O I
10.1090/S0002-9939-07-09008-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we investigate the asymptotic behavior of spectra of Schrodinger operators with continuous potential on the Sierpinski gasket SG. In particular, using the existence of localized eigenfunctions for the Laplacian on SG we show that the eigenvalues of the Schrodinger operator break into clusters around certain eigenvalues of the Laplacian. Moreover, we prove that the characteristic measure of these clusters converges to a measure. Results similar to ours were first observed by A. Weinstein and V. Guillemin for Schrodinger operators on compact Riemannian manifolds.
引用
收藏
页码:2453 / 2459
页数:7
相关论文
共 50 条
  • [41] EIGENVALUE ASYMPTOTICS FOR POLYNOMIALLY COMPACT PSEUDODIFFERENTIAL OPERATORS
    Rozenblum, G.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2022, 33 (02) : 341 - 353
  • [42] Coloring Sierpinski graphs and Sierpinski gasket graphs
    Klavzar, Sandi
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (02): : 513 - 522
  • [43] ASYMPTOTICS OF EIGENVALUE CLUSTERS FOR LAPLACIAN PLUS A POTENTIAL
    WEINSTEIN, A
    DUKE MATHEMATICAL JOURNAL, 1977, 44 (04) : 883 - 892
  • [44] Perturbations of the Landau Hamiltonian: Asymptotics of Eigenvalue Clusters
    G. Hernandez-Duenas
    S. Pérez-Esteva
    A. Uribe
    C. Villegas-Blas
    Annales Henri Poincaré, 2022, 23 : 361 - 391
  • [45] Perturbations of the Landau Hamiltonian: Asymptotics of Eigenvalue Clusters
    Hernandez-Duenas, G.
    Perez-Esteva, S.
    Uribe, A.
    Villegas-Blas, C.
    ANNALES HENRI POINCARE, 2022, 23 (02): : 361 - 391
  • [46] Quantum walks on Sierpinski gasket and Sierpinski tetrahedron
    Xie, Hui-Hui
    Zeng, Guo-Mo
    QUANTUM INFORMATION PROCESSING, 2021, 20 (07)
  • [47] Quantum walks on Sierpinski gasket and Sierpinski tetrahedron
    Hui-Hui Xie
    Guo-Mo Zeng
    Quantum Information Processing, 2021, 20
  • [48] Resonance asymptotics for Schrodinger operators on hyperbolic space
    Borthwick, David
    Crompton, Catherine
    JOURNAL OF SPECTRAL THEORY, 2014, 4 (03) : 515 - 567
  • [49] Heat kernel asymptotics for magnetic Schrodinger operators
    Bolte, Jens
    Keppeler, Stefan
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (11)
  • [50] Dirac operators and geodesic metric on the harmonic Sierpinski gasket and other fractal sets
    Lapidus, Michel L.
    Sarhad, Jonathan J.
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2014, 8 (04) : 947 - 985