Asymptotics of eigenvalue clusters for Schrodinger operators on the Sierpinski gasket

被引:8
|
作者
Okoudjou, Kasso A. [1 ]
Strichartz, Robert S. [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
关键词
analysis on fractals; Schrodinger operators; Sierpinski gasket;
D O I
10.1090/S0002-9939-07-09008-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we investigate the asymptotic behavior of spectra of Schrodinger operators with continuous potential on the Sierpinski gasket SG. In particular, using the existence of localized eigenfunctions for the Laplacian on SG we show that the eigenvalues of the Schrodinger operator break into clusters around certain eigenvalues of the Laplacian. Moreover, we prove that the characteristic measure of these clusters converges to a measure. Results similar to ours were first observed by A. Weinstein and V. Guillemin for Schrodinger operators on compact Riemannian manifolds.
引用
收藏
页码:2453 / 2459
页数:7
相关论文
共 50 条
  • [31] SOME SPECTRAL PROPERTIES OF PSEUDO-DIFFERENTIAL OPERATORS ON THE SIERPINSKI GASKET
    Ionescu, Marius
    Okoudjou, Kasso A.
    Rogers, Luke G.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (05) : 2183 - 2198
  • [32] A note on eigenvalue bounds for Schrodinger operators
    Lee, Yoonjung
    Seo, Ihyeok
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 470 (01) : 340 - 347
  • [33] GEODESICS OF THE SIERPINSKI GASKET
    Saltan, Mustafa
    Ozdemir, Yunus
    Demir, Bunyamin
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (03)
  • [34] Sandpiles on a Sierpinski gasket
    Daerden, F
    Vanderzande, C
    PHYSICA A, 1998, 256 (3-4): : 533 - 546
  • [35] Sandpiles on a Sierpinski gasket
    Daerden, Frank
    Vanderzande, Carlo
    Physica A: Statistical Mechanics and its Applications, 1998, 256 (3-4): : 533 - 546
  • [36] Slicing the Sierpinski gasket
    Barany, Balazs
    Ferguson, Andrew
    Simon, Karoly
    NONLINEARITY, 2012, 25 (06) : 1753 - 1770
  • [37] Semiclassical eigenvalue asymptotics for a Schrodinger operator with a degenerate potential
    Morame, A
    Truc, F
    ASYMPTOTIC ANALYSIS, 2000, 22 (01) : 39 - 49
  • [38] Eigenvalue asymptotics for the schrodinger operator with a δ-interaction on a punctured surface
    Exner, P
    Yoshitomi, K
    LETTERS IN MATHEMATICAL PHYSICS, 2003, 65 (01) : 19 - 26
  • [39] Eigenvalue asymptotics for Dirac-Bessel operators
    Hryniv, Rostyslav O.
    Mykytyuk, Yaroslav V.
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (06)
  • [40] EIGENVALUE ASYMPTOTICS FOR THE SCHRODINGER OPERATOR WITH PERTURBED PERIODIC POTENTIAL
    RAIKOV, GD
    INVENTIONES MATHEMATICAE, 1992, 110 (01) : 75 - 93