Waveguide modes spatially resolved by low-loss STEM-EELS

被引:4
|
作者
Kordahl, David [1 ,2 ]
Alexander, Duncan T. L. [3 ]
Dwyer, Christian [4 ]
机构
[1] Centenary Coll Louisiana, Dept Phys & Engn, Shreveport, LA 71104 USA
[2] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
[3] Ecole Polytech Fed Lausanne, Inst Phys, Electron Spectrometry & Microscopy Lab, CH-1015 Lausanne, Switzerland
[4] Sans Souci LPO, Electron Imaging & Spect Tools, POB 506, Sans Souci, NSW 2219, Australia
关键词
ELECTRON-ENERGY-LOSS; VIBRATIONAL SPECTROSCOPY; SURFACE-PLASMONS; EXCITATIONS; MICROSCOPY; RESOLUTION; CATHODOLUMINESCENCE; SCATTERING; SCALE; FILMS;
D O I
10.1103/PhysRevB.103.134109
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In an era of new developments in nanomaterials analysis enabled by the unprecedented spatial and energy resolutions of electron energy-loss spectroscopy in the scanning transmission electron microscope (STEM-EELS), it remains that the vast majority of works concern collective or single-particle excitations that are well described by the electrostatic approximation, which neglects retardation and magnetic field effects. Here we demonstrate a simple case in which that approximation is fundamentally inadequate. When the beam energy is above the Cherenkov threshold and the geometric dimensions of the nanomaterial sample are on the order of the wavelength of light in the material, spatial variations in low-loss (less than or similar to 5 eV) spectral maps from guided light modes may be observed. We demonstrate such observations for amorphous silicon disks and offer an interpretation of the results based on the waveguide modes of a cylinder. We also demonstrate explicitly that spatial variations from waveguide modes are manifest in analytic models for the especially simple geometry of a STEM beam penetrating a dielectric ribbon. We discuss how these modes relate to those that have been observed more generally in dielectric nanomaterials.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Elemental quantification using electron energy-loss spectroscopy with a low voltage scanning transmission electron microscope (STEM-EELS)
    Dumaresq, Nicolas
    Brodusch, Nicolas
    Gauvin, Raynald
    Bessette, Stephanie
    [J]. ULTRAMICROSCOPY, 2024, 262
  • [32] STEM-EELS analysis of multipole surface plasmon modes in symmetry-broken AuAg nanowire dimers
    Schubert, Ina
    Sigle, Wilfried
    van Aken, Peter A.
    Trautmann, Christina
    Toimil-Molares, Maria Eugenia
    [J]. NANOSCALE, 2015, 7 (11) : 4935 - 4941
  • [33] High Throughput Phase Mapping for Metrology Using Low-loss EELS
    Fu, Lianfeng
    Chen, Lifan
    Wang, Haifeng
    [J]. ISTFA 2017: CONFERENCE PROCEEDINGS FROM THE 43RD INTERNATIONAL SYMPOSIUM FOR TESTING AND FAILURE ANALYSIS, 2017, : 362 - 365
  • [34] Quantitative parameters for the examination of InGaN QW multilayers by low-loss EELS
    Eljarrat, Alberto
    Lopez-Conesa, Lluis
    Magen, Cesar
    Garcia-Lepetit, Noemi
    Gacevic, Zarko
    Calleja, Enrique
    Peiro, Francesca
    Estrade, Sonia
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (33) : 23264 - 23276
  • [35] Low-Loss and Compact Silicon Rib Waveguide Bends
    Brimont, Antoine
    Hu, Xuan
    Cueff, Sebastien
    Romeo, Pedro Rojo
    St Girons, Guillaume
    Griol, Amadeu
    Zanzi, Andrea
    Sanchis, Pablo
    Orobtchouk, Regis
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (03) : 299 - 302
  • [36] The low-loss EELS spectra from radiation damaged gold nanoparticles
    Tehuacanero-Cuapa, S.
    Reyes-Gasga, J.
    Rodriguez-Gomez, A.
    Bahena, D.
    Hernandez-Calderon, I.
    Garcia-Garcia, R.
    [J]. JOURNAL OF APPLIED PHYSICS, 2016, 120 (16)
  • [37] Correlating low-loss EELS and ELNES of carbon nano-structures
    Seepujak, A
    Gutiérrez-Sosa, A
    Harvey, AJ
    Bangert, U
    Blank, VD
    Kulnitskiy, BA
    Batov, DV
    [J]. ELECTRON MICROSCOPY AND ANALYSIS 2001, 2001, (168): : 307 - 310
  • [38] Electronic properties of black phosphorus using monochromated low-loss EELS
    Benabdallah, I.
    Auad, Y.
    Sigle, W.
    van Aken, P. A.
    Kociak, M.
    Benaissa, M.
    [J]. MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2021, 265
  • [39] Low-loss EELS study of oxide-covered aluminum nanospheres
    Stockli, T
    Stadelmann, P
    Chatelain, A
    [J]. MICROSCOPY MICROANALYSIS MICROSTRUCTURES, 1997, 8 (02): : 145 - 155
  • [40] GHZ-106 LOW-LOSS BEAM WAVEGUIDE
    ANDERSON, I
    RUSCIO, JT
    [J]. ELECTRONICS LETTERS, 1975, 11 (10) : 213 - 214