Stability analysis and oscillatory structures in time-fractional reaction-diffusion systems

被引:40
|
作者
Gafiychuk, V. V.
Datsko, B. Y.
机构
[1] CUNY, Coll Technol, Dept Phys, Brooklyn, NY 11201 USA
[2] Natl Acad Sci Ukraine, Inst Appl Problems Mech & Math, UA-79053 Lvov, Ukraine
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 05期
关键词
D O I
10.1103/PhysRevE.75.055201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The linear stage of stability is studied for a two-component fractional reaction-diffusion system. It is shown that, with a certain value of the fractional derivative index, a different type of instability occurs. The linear stability analysis shows that the system becomes unstable toward perturbations of finite wave number. As a result, inhomogeneous oscillations with this wave number become unstable and lead to nonlinear oscillations which result in spatial oscillatory structure formation. A computer simulation of a Bonhoeffer-van der Pol type of reaction-diffusion system with fractional time derivatives is performed.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Stabilization and uncertainty analysis of a time-fractional reaction diffusion equation cascaded with a time-fractional hyperbolic partial differential equation
    Chen, Juan
    Zhuang, Bo
    Tepljakov, Aleksei
    Petlenkov, Eduard
    [J]. ASIAN JOURNAL OF CONTROL, 2022, 24 (05) : 2294 - 2310
  • [42] Laplace-Residual Power Series Method for Solving Time-Fractional Reaction-Diffusion Model
    Oqielat, Moa'ath N.
    Eriqat, Tareq
    Ogilat, Osama
    El-Ajou, Ahmad
    Alhazmi, Sharifah E.
    Al-Omari, Shrideh
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (04)
  • [43] On the existence and uniqueness of solutions to a nonlinear variable order time-fractional reaction-diffusion equation with delay
    Van Bockstal, Karel
    Zaky, Mahmoud A.
    Hendy, Ahmed S.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 115
  • [44] On the stability of binary reaction-diffusion systems
    Rionero, S
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (7-9): : 773 - 784
  • [45] Bifurcation Characteristics of Fractional Reaction-Diffusion Systems
    Datsko, Bohdan
    Gafiychuk, Vasyl
    Luchko, Yuri
    [J]. 9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 : 290 - 297
  • [46] Blowup and MLUH stability of time-space fractional reaction-diffusion equations
    Gao, Peng
    Chen, Pengyu
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (09): : 3351 - 3361
  • [47] Fractional reaction-diffusion
    Henry, BI
    Wearne, SL
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 276 (3-4) : 448 - 455
  • [48] On Stability of a Fractional Discrete Reaction-Diffusion Epidemic Model
    Alsayyed, Omar
    Hioual, Amel
    Gharib, Gharib M.
    Abualhomos, Mayada
    Al-Tarawneh, Hassan
    Alsauodi, Maha S.
    Abu-Alkishik, Nabeela
    Al-Husban, Abdallah
    Ouannas, Adel
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (10)
  • [49] Asymptotic stability of an epidemiological fractional reaction-diffusion model
    Djebara, Lamia
    Abdelmalek, Salem
    Bendoukha, Samir
    [J]. DEMONSTRATIO MATHEMATICA, 2023, 56 (01)
  • [50] ON THE CRITICAL BEHAVIOR FOR TIME-FRACTIONAL REACTION DIFFUSION PROBLEMS
    Aldawish, Ibtisam
    Samet, Bessem
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (08): : 2030 - 2046