Dynamics of Solutions to the Gross-Pitaevskii Equation Describing Dipolar Bose-Einstein Condensates

被引:1
|
作者
Bellazzini, Jacopo [1 ]
Forcella, Luigi [2 ,3 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Pisa, Italy
[2] Heriot Watt Univ, Dept Math, Edinburgh, Scotland
[3] Maxwell Inst Math Sci, Dept Math, Edinburgh, Scotland
基金
英国工程与自然科学研究理事会;
关键词
NONLINEAR SCHRODINGER-EQUATION; GLOBAL WELL-POSEDNESS; BLOW-UP; CAUCHY-PROBLEM; QUANTUM GASES; SCATTERING; THRESHOLD; NLS;
D O I
10.1007/978-981-19-6434-3_2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We review some recent results on the long-time dynamics of solutions to the Gross-Pitaevskii equation (GPE) governing non-trapped dipolar quantum gases. We describe the asymptotic behaviors of solutions for different initial configurations of the initial datum in the energy space, specifically for data below, above, and at the mass-energy threshold. We revisit some properties of powers of the Riesz transforms by means of the decay properties of the integral kernel associated to the parabolic biharmonic equation. These decay properties play a fundamental role in establishing the dynamical features of the solutions to the studied GPE.
引用
收藏
页码:25 / 57
页数:33
相关论文
共 50 条
  • [21] Bose-Einstein condensation dynamics from the numerical solution of the Gross-Pitaevskii equation
    Adhikari, SK
    Muruganandam, P
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2002, 35 (12) : 2831 - 2843
  • [22] Asymptotic solutions to the Gross-Pitaevskii gain equation: Growth of a Bose-Einstein condensate
    Drummond, PD
    Kheruntsyan, KV
    PHYSICAL REVIEW A, 2001, 63 (01):
  • [23] Exact solutions of the Gross-Pitaevskii equation for stable vortex modes in two-dimensional Bose-Einstein condensates
    Wu, Lei
    Li, Lu
    Zhang, Jie-Fang
    Mihalache, Dumitru
    Malomed, Boris A.
    Liu, W. M.
    PHYSICAL REVIEW A, 2010, 81 (06):
  • [24] Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation
    Bao, WZ
    Jaksch, D
    Markowich, PA
    JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) : 318 - 342
  • [25] Stationary solutions and dynamical evolution of the nonlocal Gross-Pitaevskii equation in spin-2 Bose-Einstein condensates
    Li, Hongmei
    Peng, Li
    Wu, Xuefei
    RESULTS IN PHYSICS, 2023, 45
  • [26] Stationary Solutions and Dynamical Evolution of the Nonlocal Gross-Pitaevskii Equation in Spin-2 Bose-Einstein Condensates
    Li, Hongmei
    Peng, Li
    Wu, Xuefei
    SSRN, 2022,
  • [27] Line-soliton dynamics and stability of Bose-Einstein condensates in (2+1) Gross-Pitaevskii equation
    Radha, R.
    Kumar, V. Ramesh
    Wadati, Miki
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (04)
  • [28] PAINLEVE ANALYSIS, LAX PAIR AND BACKLUND TRANSFORMATION FOR THE GROSS-PITAEVSKII EQUATION IN THE BOSE-EINSTEIN CONDENSATES
    Qi, Feng-Hua
    Tian, Bo
    Xu, Tao
    Zhang, Hai-Qiang
    Li, Li-Li
    Meng, Xiang-Hua
    Lue, Xing
    Liu, Wen-Jun
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (08): : 1037 - 1047
  • [29] Derivation of the Gross-Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate
    Erdos, Laszlo
    Schlein, Benjamin
    Yau, Horng-Tzer
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (12) : 1659 - 1741
  • [30] Conformal invariance in out-of-equilibrium Bose-Einstein condensates governed by the Gross-Pitaevskii equation
    Estrada, J. Amette
    Noseda, M.
    Cobelli, P. J.
    Mininni, P. D.
    PHYSICAL REVIEW A, 2024, 109 (06)