Soliton solutions, conservation laws and modulation instability for the discrete coupled modified Korteweg-de Vries equations

被引:3
|
作者
Guo, Rui [1 ]
Song, Jiang-Yan [1 ]
Zhang, Hong-Tao [2 ]
Qi, Feng-Hua [3 ]
机构
[1] Taiyuan Univ Technol, Sch Math, Taiyuan 030024, Shanxi, Peoples R China
[2] Zhongyuan Univ Technol, Coll Sci, Zhengzhou 450007, Henan, Peoples R China
[3] Beijing Wuxi Univ, Sch Informat, Beijing 101149, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2018年 / 32卷 / 14期
关键词
The discrete coupled modified Korteweg-de Vries equation; N-fold Darboux transformation; soliton solutions; conservation laws; modulation instability; NONLINEAR SCHRODINGER-EQUATION; FOLD DARBOUX TRANSFORMATION; INTEGRABLE LATTICE HIERARCHY; MAXWELL-BLOCH SYSTEM; SYMBOLIC COMPUTATION; OPTICS; MEDIA;
D O I
10.1142/S021798491850152X
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, the discrete coupled modified Korteweg-de Vries equations are systematically investigated. Based on the Lax pair, N-fold discrete Darboux transformation, discrete soliton solutions, conservation laws and modulation instability are analyzed and presented.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Nonlinear stability of breather solutions to the coupled modified Korteweg-de Vries equations
    Wang, Jingqun
    Tian, Lixin
    Guo, Boling
    Zhang, Yingnan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 90
  • [22] Exact solutions and conservation laws for coupled generalized Korteweg-de Vries and quintic regularized long wave equations
    Hamdi, S.
    Enright, W. H.
    Schiesser, W. E.
    Gottlieb, J. J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : E1425 - E1434
  • [23] Conservation laws, periodic and rational solutions for an extended modified Korteweg-de Vries equation
    Wang, Xin
    Zhang, Jianlin
    Wang, Lei
    NONLINEAR DYNAMICS, 2018, 92 (04) : 1507 - 1516
  • [24] Soliton states of n-coupled Korteweg-de Vries equations
    Triki, H
    El Akrmi, A
    Rabia, MK
    OPTICS COMMUNICATIONS, 2004, 232 (1-6) : 429 - 437
  • [25] Integrability of reductions of the discrete Korteweg-de Vries and potential Korteweg-de Vries equations
    Hone, A. N. W.
    van der Kamp, P. H.
    Quispel, G. R. W.
    Tran, D. T.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2154):
  • [26] New Positon, Negaton, and Complexiton Solutions for a Coupled Korteweg-de Vries - Modified Korteweg-de Vries System
    Hu, Hengchun
    Yang, Mingyuan
    Zhang, Ling
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (6-7): : 347 - 354
  • [27] PERTURBED KORTEWEG-de VRIES EQUATIONS Symmetry Analysis and Conservation Laws
    Bai, Yu-Shan
    Zhang, Qi
    THERMAL SCIENCE, 2019, 23 (04): : 2281 - 2289
  • [28] Exploration of Soliton Solutions to the Special Korteweg-De Vries Equation with a Stability Analysis and Modulation Instability
    Alomair, Abdulrahman
    Al Naim, Abdulaziz S.
    Bekir, Ahmet
    MATHEMATICS, 2025, 13 (01)
  • [29] Multi soliton solution for the system of Coupled Korteweg-de Vries equations
    Rady, A. S. Abdel
    Osman, E. S.
    Khalfallah, Mohammed
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 210 (01) : 177 - 181
  • [30] Complete integrability of two-coupled discrete modified Korteweg-de Vries equations
    Sahadevan, R.
    Balakrishnan, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (41)