Mean curvature flow via convex functions on Grassmannian manifolds

被引:1
|
作者
Xin, Yuanlong [1 ]
Yang, Ling [2 ]
机构
[1] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
[2] Max Planck Inst Math Sci, D-04103 Leibzig, Germany
基金
中国国家自然科学基金;
关键词
Mean curvature flow; Convex function; Gauss map; LAGRANGIAN SUBMANIFOLDS; THEOREMS;
D O I
10.1007/s11401-009-0173-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the convex functions on Grassmannian manifolds, the authors obtain the interior estimates for the mean curvature flow of higher codimension. Confinable properties of Gauss images under the mean curvature flow have been obtained, which reveal that if the Gauss image of the initial submanifold is contained in a certain sublevel set of the upsilon-function, then all the Gauss images of the submanifolds under the mean curvature flow are also contained in the same sublevel set of the upsilon-function. Under such restrictions, curvature estimates in terms of upsilon-function composed with the Gauss map can be carried out.
引用
收藏
页码:315 / 328
页数:14
相关论文
共 50 条
  • [41] The extension of the Hk mean curvature flow in Riemannian manifolds
    Hongbing Qiu
    Yunhua Ye
    Anqiang Zhu
    Chinese Annals of Mathematics, Series B, 2014, 35 : 191 - 208
  • [42] Mean curvature flow of surface in 4-manifolds
    Chen, JY
    Li, JY
    ADVANCES IN MATHEMATICS, 2001, 163 (02) : 287 - 309
  • [43] Forced convex mean curvature flow in Euclidean spaces
    Guanghan Li
    Isabel Salavessa
    manuscripta mathematica, 2008, 126 : 333 - 351
  • [44] Forced convex mean curvature flow in Euclidean spaces
    Li, Guanghan
    Salavessa, Isabel
    MANUSCRIPTA MATHEMATICA, 2008, 126 (03) : 333 - 351
  • [45] CONVEX SOLUTIONS TO THE POWER-OF-MEAN CURVATURE FLOW
    Chen, Shibing
    PACIFIC JOURNAL OF MATHEMATICS, 2015, 276 (01) : 117 - 141
  • [46] Collapsing and noncollapsing in convex ancient mean curvature flow
    Bourni, Theodora
    Langford, Mat
    Lynch, Stephen
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (801): : 273 - 305
  • [47] Mean curvature flow with surgeries of two–convex hypersurfaces
    Gerhard Huisken
    Carlo Sinestrari
    Inventiones mathematicae, 2009, 175 : 137 - 221
  • [48] FLOW BY MEAN-CURVATURE OF CONVEX SURFACES INTO SPHERES
    HUISKEN, G
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1984, 20 (01) : 237 - 266
  • [49] On the mean curvature flow for σk-convex hypersurfaces
    Fang, H
    Wang, CY
    HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (04): : 997 - 1007
  • [50] Convexity estimates for mean curvature flow and singularities of mean convex surfaces
    Huisken, G
    Sinestrari, C
    ACTA MATHEMATICA, 1999, 183 (01) : 45 - 70