Mean curvature flow via convex functions on Grassmannian manifolds

被引:1
|
作者
Xin, Yuanlong [1 ]
Yang, Ling [2 ]
机构
[1] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
[2] Max Planck Inst Math Sci, D-04103 Leibzig, Germany
基金
中国国家自然科学基金;
关键词
Mean curvature flow; Convex function; Gauss map; LAGRANGIAN SUBMANIFOLDS; THEOREMS;
D O I
10.1007/s11401-009-0173-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the convex functions on Grassmannian manifolds, the authors obtain the interior estimates for the mean curvature flow of higher codimension. Confinable properties of Gauss images under the mean curvature flow have been obtained, which reveal that if the Gauss image of the initial submanifold is contained in a certain sublevel set of the upsilon-function, then all the Gauss images of the submanifolds under the mean curvature flow are also contained in the same sublevel set of the upsilon-function. Under such restrictions, curvature estimates in terms of upsilon-function composed with the Gauss map can be carried out.
引用
收藏
页码:315 / 328
页数:14
相关论文
共 50 条