Development of the RF plasma source at atmospheric pressure

被引:9
|
作者
Kang, JG [1 ]
Kim, HS [1 ]
Ahn, SW [1 ]
Uhm, HS [1 ]
机构
[1] Ajou Univ, Dept Mol Sci & Technol, Paldal Gu, Suwon 442749, South Korea
来源
SURFACE & COATINGS TECHNOLOGY | 2003年 / 171卷 / 1-3期
关键词
RF plasma; atmospheric; dielectric; asymmetric biaxial reactor;
D O I
10.1016/S0257-8972(03)00258-5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A radio frequency (RF) plasma source operates by feeding helium or argon gas through two coaxial electrodes driven by a 13.56 MHz RF source. In order to prevent an arc discharge, a dielectric material is loaded outside the center electrode. A stable, arc-free discharge is produced at a flow rate of 1.5 l/min of helium gas. The temperature of the gas flame varies from 100 to 150 degreesC depending on the RF power. The breakdown voltage also changes when the flow rate varies. The plasma generation in a hot chamber is much more efficient than that in a cold chamber. The plasma characteristics are diagnosed by using optical emission spectroscopy. One of the applications of the RF plasma source is the printed circuit board (PCB) cleaning process, needed for environmental protection. The PCB cleaning device forms an asymmetric biaxial reactor. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:144 / 148
页数:5
相关论文
共 50 条
  • [41] Sheath and bulk expansion induced by RF field in atmospheric pressure microwave plasma
    Lee, J.
    Nam, W. J.
    Lee, S. T.
    Lee, J. K.
    Yun, G. S.
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2018, 27 (07):
  • [42] Finite element analysis of an atmospheric pressure RF-excited plasma needle
    Sakiyama, Y.
    Graves, D. B.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2006, 39 (16) : 3451 - 3456
  • [43] Modeling of Striated Filaments Occurring in a Nonthermal RF Plasma Jet at Atmospheric Pressure
    Sigeneger, Florian
    Loffhagen, Detlef
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2014, 42 (10) : 2498 - 2499
  • [44] Impact of catalysis on n-butane oxidation in an RF atmospheric pressure plasma
    Stewig, C.
    Chauvet, L.
    von Keudell, A.
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2023, 32 (10):
  • [45] Development of Atmospheric Pressure Plasma Jet with Slit Nozzle
    Oshima, Nobuaki
    Takada, Ryuji
    Kubota, Yusuke
    Abraha, Petros
    Hara, Tamio
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2011, 50 (01)
  • [46] Development of a combinatorial atmospheric pressure cold plasma processor
    Terajima, T
    Koinuma, H
    [J]. APPLIED SURFACE SCIENCE, 2004, 223 (1-3) : 259 - 263
  • [47] Effects of Atmospheric Pressure Plasma on Growth and Development of Tomato
    Zhou, Zhuwen
    Yang, Size
    Huang, Yanfen
    Chen, Wei
    [J]. 2010 INTERNATIONAL CONFERENCE AGRICULTURAL SCIENCES AND ENGINEERING (CASE 2010), 2010, : 55 - 57
  • [48] Visualization of Revolving Modes in RF and MW Nonthermal Atmospheric Pressure Plasma Jets
    Schaefer, Jan
    Vasina, Petr
    Hnilica, Jaroslav
    Foest, Ruediger
    Kudrle, Vit
    Weltmann, Klaus-Dieter
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2011, 39 (11) : 2350 - 2351
  • [49] Characteristics of nanocomposite films deposited by atmospheric pressure uniform RF glow plasma
    Uygun, Aysegul
    Oksuz, Lutfi
    Yavuz, Ayse Gul
    Gulec, Ali
    Sen, Songul
    [J]. CURRENT APPLIED PHYSICS, 2011, 11 (02) : 250 - 254
  • [50] Development of powder antifoamer by atmospheric pressure glow plasma
    Nakajima, T
    Tanaka, K
    Inomata, T
    Kogoma, M
    [J]. THIN SOLID FILMS, 2001, 386 (02) : 208 - 212