Synchronization of noisy dissipative systems under discretization

被引:4
|
作者
Kloeden, Peter E. [1 ]
Neuenkirch, Andreas [1 ]
Pavani, Raffaella [2 ]
机构
[1] Goethe Univ Frankfurt, Inst Math, D-60054 Frankfurt, Germany
[2] Politecn Milan, Dipartimento Matemat, I-20155 Milan, Italy
关键词
synchronization; additive noise; stationary stochastic process; one-sided dissipative Lipschitz condition; drift-implicit Euler scheme; ATTRACTORS;
D O I
10.1080/10236190701754222
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the synchronization of noisy dissipative systems is preserved when a drift-implicit Euler scheme is used for the discretization. In particular, in this case the order of discretization and synchronization can be exchanged.
引用
收藏
页码:785 / 801
页数:17
相关论文
共 50 条
  • [41] Dissipative discretization methods for approximations to the Boltzmann equation
    Ringhofer, C
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2001, 11 (01): : 133 - 148
  • [42] Entropies for dissipative fluids and magnetofluids without discretization
    Montgomery, D
    MAXIMUM ENTROPY AND BAYESIAN METHODS, 1996, 79 : 221 - 227
  • [43] Nonautonomous systems with transversal homoclinic structures under discretization
    Alina Girod
    Thorsten Hüls
    BIT Numerical Mathematics, 2016, 56 : 605 - 631
  • [44] CENTER MANIFOLDS OF DYNAMIC-SYSTEMS UNDER DISCRETIZATION
    BEYN, WJ
    LORENZ, J
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1987, 9 (3-4) : 381 - 414
  • [45] Synchronization in networks of noisy interneurons
    Tiesinga, PHE
    Rappel, WJ
    Jose, JV
    COMPUTATIONAL NEUROSCIENCE: TRENDS IN RESEARCH, 1998, : 555 - 559
  • [46] Data synchronization and noisy environments
    Newton, NJ
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (08) : 2253 - 2262
  • [47] Synchronization of Multiple Mechanical Oscillators Under Noisy Measurements Signals and Mismatch Parameters
    Aguilar-Lopez, Ricardo
    Mata-Machuca, Juan L.
    Martinez-Guerra, Rafael
    Perez-Pinacho, Claudia A.
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (7-8) : 699 - 707
  • [48] PROJECTOR FORMALISM OF GENERALIZED BROWNIAN-MOTION THEORY APPLIED TO DISSIPATIVE AND NOISY SYSTEMS
    KAWASAKI, K
    KAWAKATSU, T
    JOURNAL OF STATISTICAL PHYSICS, 1992, 67 (3-4) : 795 - 811
  • [49] Stability, coherent spiking and synchronization in noisy excitable systems with coupling and internal delays
    Franovic, Igor
    Todorovic, Kristina
    Vasovic, Nebojsa
    Buric, Nikola
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) : 3202 - 3219
  • [50] Performance evaluation of symbol synchronization in OFDM systems over impulsive noisy channels
    Hazmi, A
    Rinne, J
    Kuusisto, T
    Renfors, M
    VTC2004-SPRING: 2004 IEEE 59TH VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-5, PROCEEDINGS, 2004, : 1782 - 1786