Synchronization of noisy dissipative systems under discretization

被引:4
|
作者
Kloeden, Peter E. [1 ]
Neuenkirch, Andreas [1 ]
Pavani, Raffaella [2 ]
机构
[1] Goethe Univ Frankfurt, Inst Math, D-60054 Frankfurt, Germany
[2] Politecn Milan, Dipartimento Matemat, I-20155 Milan, Italy
关键词
synchronization; additive noise; stationary stochastic process; one-sided dissipative Lipschitz condition; drift-implicit Euler scheme; ATTRACTORS;
D O I
10.1080/10236190701754222
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the synchronization of noisy dissipative systems is preserved when a drift-implicit Euler scheme is used for the discretization. In particular, in this case the order of discretization and synchronization can be exchanged.
引用
收藏
页码:785 / 801
页数:17
相关论文
共 50 条
  • [21] Geometric framework for phase synchronization in coupled noisy nonlinear systems
    Balakrishnan, J
    PHYSICAL REVIEW E, 2006, 73 (03)
  • [22] Synchronization of Dissipative Nose-Hoover Systems: Circuit Implementation
    Lu, Rending
    Natiq, Hayder
    Ali, Ahmed M. Ali
    Abdolmohammadi, Hamid Reza
    Jafari, Sajad
    RADIOENGINEERING, 2023, 32 (04) : 511 - 522
  • [24] Global Synchronization of Directional Networked Systems With Eventually Dissipative Nodes
    Xiang, Ji
    Li, Yanjun
    Wei, Wei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2012, 59 (06) : 1278 - 1289
  • [25] Monotonic dynamical systems under spatial discretization
    Diamond, P
    Kloeden, P
    Kozyakin, V
    Pokrovskii, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (07) : 2169 - 2174
  • [26] Periodic solutions of autonomous systems under discretization
    Inst for Control Sciences, Moscow, Russia
    Numer Funct Anal Optim, 7-8 (659-665):
  • [27] Periodic solutions of autonomous systems under discretization
    Bobylev, NA
    Kloeden, PE
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1997, 18 (7-8) : 659 - 665
  • [28] Outer synchronization between dynamic varying networks under noisy condition
    Liang, Hao
    Sun, Yumei
    Chi, Ronghu
    Fang, Xinli
    Wang, Jiaming
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2018, 6 (03): : 92 - 99
  • [29] Dissipative phase transition in a pair of coupled noisy two-level systems
    Bonart, Julius
    PHYSICAL REVIEW B, 2013, 88 (12)
  • [30] A Behavioural Model for Accurate Investigation of Noisy Lorenz Chaotic Synchronization Systems
    Nikpour, M.
    Mobini, M.
    Zahabi, M. R.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2023, 36 (08): : 1502 - 1508