MESHLESS LOCAL PETROV-GALERKIN METHOD FOR NONLINEAR HEAT CONDUCTION PROBLEMS

被引:33
|
作者
Thakur, Harishchandra [1 ]
Singh, K. M. [1 ]
Sahoo, P. K. [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Mech & Ind Engn, Roorkee 247667, Uttar Pradesh, India
关键词
FINITE-ELEMENT; MLPG APPROACH; EQUATION; FORMULATION; MECHANICS;
D O I
10.1080/10407790903508152
中图分类号
O414.1 [热力学];
学科分类号
摘要
The meshless local Petrov-Galerkin (MLPG) method is an effective meshless method to solve partial differential equations. In this article, the MLPG method is used to solve nonlinear steady and transient heat conduction problems. The essential boundary condition is enforced by the method of direct interpolation. The moving least-squares (MLS) method is used for interpolation. Thermal conductivity of the material is assumed to be dependent on the temperature. An iterative procedure based on the predictor-corrector method is used. Time integration is performed using the h method. Results are compared with the available exact solution and the solution by the finite-element method, and is found to be in good agreement.
引用
收藏
页码:393 / 410
页数:18
相关论文
共 50 条
  • [41] A Meshless Local Petrov-Galerkin Method for Three-Dimensional Scalar Problems
    Nicomedes, Williams L.
    Mesquita, Renato C.
    Moreira, Fernando J. S.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2011, 47 (05) : 1214 - 1217
  • [42] Meshless local Petrov-Galerkin (MLPG) mixed collocation method for elasticity problems
    Atluri, S. N.
    Liu, H. T.
    Han, Z. D.
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2006, 14 (03): : 141 - 152
  • [43] Meshless local Petrov-Galerkin formulation for problems in composite micromechanics
    Dang, Thi D.
    Sankar, Bhavani V.
    [J]. AIAA JOURNAL, 2007, 45 (04) : 912 - 921
  • [44] Transient thermal conduction with variable conductivity using the Meshless Local Petrov-Galerkin method
    Karagiannakis, N. P.
    Bourantas, G. C.
    Kalarakis, A. N.
    Skouras, E. D.
    Burganos, V. N.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 272 : 676 - 686
  • [45] A Comparison of the Element Free Galerkin Method and the Meshless Local Petrov-Galerkin Method for Solving Electromagnetic Problems
    He, Wei
    Liu, Zehui
    Gordon, Richard K.
    Hutchcraft, W. Elliott
    Yang, Fan
    Chang, Afei
    [J]. APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2012, 27 (08): : 620 - 629
  • [46] Improving the Mixed Formulation for Meshless Local Petrov-Galerkin Method
    Fonseca, Alexandre R.
    Correa, Bruno C.
    Silva, Elson J.
    Mesquita, Renato C.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 2907 - 2910
  • [47] Direct meshless local Petrov-Galerkin method for elastodynamic analysis
    Mirzaei, Davoud
    Hasanpour, Kourosh
    [J]. ACTA MECHANICA, 2016, 227 (03) : 619 - 632
  • [48] Computational complexity and parallelization of the meshless local Petrov-Galerkin method
    Trobec, Roman
    Sterk, Marjan
    Robic, Borut
    [J]. COMPUTERS & STRUCTURES, 2009, 87 (1-2) : 81 - 90
  • [49] Imposing boundary conditions in the meshless local Petrov-Galerkin method
    Fonseca, A. R.
    Viana, S. A.
    Silva, E. J.
    Mesquita, R. C.
    [J]. IET SCIENCE MEASUREMENT & TECHNOLOGY, 2008, 2 (06) : 387 - 394
  • [50] Treatment of Material Discontinuity in the Meshless Local Petrov-Galerkin Method
    Yuan, Xufei
    Gu, Gendai
    Zhao, Meiling
    [J]. PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING AND STATISTICS APPLICATION (AMMSA 2017), 2017, 141 : 157 - 161