Twins and Causal Inference: Leveraging Nature's Experiment

被引:37
|
作者
McAdams, Tom A. [1 ,2 ]
Rijsdijk, Fruhling, V [1 ]
Zavos, Helena M. S. [3 ]
Pingault, Jean-Baptiste [1 ,4 ]
机构
[1] Kings Coll London, Social Genet & Dev Psychiat Ctr, Inst Psychiat Psychol & Neurosci, London SE5 8AF, England
[2] Univ Oslo, Promenta Res Ctr, N-0373 Oslo, Norway
[3] Kings Coll London, Inst Psychiat Psychol & Neurosci, Dept Psychol, London SE5 8AF, England
[4] UCL, Clin Educ & Hlth Psychol, Div Psychol & Language Sci, London WC1E 6BT, England
来源
基金
英国惠康基金;
关键词
ENVIRONMENTAL CONTRIBUTIONS; MENDELIAN RANDOMIZATION; EXTENDED CHILDREN; DEPRESSION; HERITABILITY; ASSOCIATIONS; ADOLESCENT; DIRECTION; GENOTYPE; FAMILY;
D O I
10.1101/cshperspect.a039552
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
In this review, we discuss how samples comprising monozygotic and dizygotic twin pairs can be used for the purpose of strengthening causal inference by controlling for shared influences on exposure and outcome. We begin by briefly introducing how twin data can be used to inform the biometric decomposition of population variance into genetic, shared environmental, and nonshared environmental influences. We then discuss how extensions to this model can be used to explore whether associations between exposure and outcome survive correction for shared etiology (common causes). We review several analytical approaches that can be applied to twin data for this purpose. These include multivariate structural equation models, cotwin control methods, direction of causation models (cross-sectional and longitudinal), and extended family designs used to assess intergenerational associations. We conclude by highlighting some of the limitations and considerations that researchers should be aware of when using twin data for the purposes of interrogating causal hypotheses.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] THE EROSION OF CAUSAL INFERENCE
    Weed, D. L.
    Alexander, D.
    Perez, V.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2011, 173 : S187 - S187
  • [42] THE FOUNDATIONS OF CAUSAL INFERENCE
    Pearl, Judea
    [J]. SOCIOLOGICAL METHODOLOGY, VOL 40, 2010, 40 : 75 - 149
  • [43] Indeterminism and causal inference
    Pedro, Inaki San
    Suarez, Mauricio
    [J]. TEOREMA, 2014, 33 (01): : 95 - 109
  • [44] Prediction and causal inference
    Gagliardi, Luigi
    [J]. ACTA PAEDIATRICA, 2009, 98 (12) : 1890 - 1892
  • [45] Introduction to causal inference
    Spirtes, Peter
    [J]. Journal of Machine Learning Research, 2010, 11 : 1643 - 1662
  • [46] Causal inference in pharmacoepidemiology
    Pazzagli, Laura
    Stuart, Elizabeth A.
    Hernan, Miguel
    Schneeweiss, Sebastian
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2019, 28 : 414 - 415
  • [47] ON THE LOGIC OF CAUSAL INFERENCE
    WEED, DL
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 1986, 123 (06) : 965 - 979
  • [48] An introduction to causal inference
    Sobel, ME
    [J]. SOCIOLOGICAL METHODS & RESEARCH, 1996, 24 (03) : 353 - 379
  • [49] Causal dynamic inference
    Bochman, Alexander
    Gabbay, Dov M.
    [J]. ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2012, 66 (1-4) : 231 - 256
  • [50] NONEXPERIMENTAL CAUSAL INFERENCE
    PAISLEY, MB
    PAISLEY, WJ
    [J]. PUBLIC OPINION QUARTERLY, 1971, 35 (03) : 478 - &