Twins and Causal Inference: Leveraging Nature's Experiment

被引:37
|
作者
McAdams, Tom A. [1 ,2 ]
Rijsdijk, Fruhling, V [1 ]
Zavos, Helena M. S. [3 ]
Pingault, Jean-Baptiste [1 ,4 ]
机构
[1] Kings Coll London, Social Genet & Dev Psychiat Ctr, Inst Psychiat Psychol & Neurosci, London SE5 8AF, England
[2] Univ Oslo, Promenta Res Ctr, N-0373 Oslo, Norway
[3] Kings Coll London, Inst Psychiat Psychol & Neurosci, Dept Psychol, London SE5 8AF, England
[4] UCL, Clin Educ & Hlth Psychol, Div Psychol & Language Sci, London WC1E 6BT, England
来源
基金
英国惠康基金;
关键词
ENVIRONMENTAL CONTRIBUTIONS; MENDELIAN RANDOMIZATION; EXTENDED CHILDREN; DEPRESSION; HERITABILITY; ASSOCIATIONS; ADOLESCENT; DIRECTION; GENOTYPE; FAMILY;
D O I
10.1101/cshperspect.a039552
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
In this review, we discuss how samples comprising monozygotic and dizygotic twin pairs can be used for the purpose of strengthening causal inference by controlling for shared influences on exposure and outcome. We begin by briefly introducing how twin data can be used to inform the biometric decomposition of population variance into genetic, shared environmental, and nonshared environmental influences. We then discuss how extensions to this model can be used to explore whether associations between exposure and outcome survive correction for shared etiology (common causes). We review several analytical approaches that can be applied to twin data for this purpose. These include multivariate structural equation models, cotwin control methods, direction of causation models (cross-sectional and longitudinal), and extended family designs used to assess intergenerational associations. We conclude by highlighting some of the limitations and considerations that researchers should be aware of when using twin data for the purposes of interrogating causal hypotheses.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] A biologist's guide to model selection and causal inference
    Laubach, Zachary M.
    Murray, Eleanor J.
    Hoke, Kim L.
    Safran, Rebecca J.
    Perng, Wei
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2021, 288 (1943)
  • [32] The Causal Effects of Causal Inference Pedagogy
    Swanson, Sonja A. A.
    [J]. EPIDEMIOLOGY, 2023, 34 (05) : 611 - 613
  • [33] Cell therapy: Leveraging nature's therapeutic potential
    Humes, HD
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2003, 14 (08): : 2211 - 2213
  • [34] The Challenge of Causal Inference
    Dammann, Olaf
    Leviton, Alan
    [J]. ANNALS OF NEUROLOGY, 2010, 68 (05) : 770 - 770
  • [35] Private Causal Inference
    Kusner, Matt J.
    Sun, Yu
    Sridharan, Karthik
    Weinberger, Kilian Q.
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 1308 - 1317
  • [36] THE RATIONALITY OF CAUSAL INFERENCE
    SHULTZ, TR
    [J]. BEHAVIORAL AND BRAIN SCIENCES, 1991, 14 (03) : 503 - 503
  • [37] Causal Graph Inference
    Poilinca, Simona
    Parajuli, Jhanak
    Abreu, Giuseppe
    [J]. 2015 49TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2015, : 1209 - 1213
  • [38] Turning nature's experiment into a cure
    Gander-Bui, Hang Thi Thuy
    [J]. ALLERGY, 2024, 79 (03) : 767 - 769
  • [39] The Future of Causal Inference
    Mitra, Nandita
    Roy, Jason
    Small, Dylan
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2022, 191 (10) : 1671 - 1676
  • [40] An Introduction to Causal Inference
    Pearl, Judea
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2010, 6 (02):