Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME

被引:251
|
作者
Soetaert, Karline [1 ]
Petzoldt, Thomas [2 ]
机构
[1] Netherlands Inst Ecol, CEME, NIOO, NL-4401 NT Yerseke, Netherlands
[2] Tech Univ Dresden, Inst Hydrobiol, D-01062 Dresden, Germany
来源
JOURNAL OF STATISTICAL SOFTWARE | 2010年 / 33卷 / 03期
关键词
simulation models; differential equations; fitting; sensitivity; Monte Carlo; identifiability R; IDENTIFIABILITY ANALYSIS;
D O I
10.18637/jss.v033.i03
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Mathematical simulation models are commonly applied to analyze experimental or environmental data and eventually to acquire predictive capabilities. Typically these models depend on poorly defined, unmeasurable parameters that need to be given a value. Fitting a model to data, so-called inverse modelling, is often the sole way of finding reasonable values for these parameters. There are many challenges involved in inverse model applications, e. g., the existence of non-identifiable parameters, the estimation of parameter uncertainties and the quantification of the implications of these uncertainties on model predictions. The R package F M E is a modeling package designed to confront a mathematical model with data. It includes algorithms for sensitivity and Monte Carlo analysis, parameter identifiability, model fitting and provides a Markov-chain based method to estimate parameter confidence intervals. Although its main focus is on mathematical systems that consist of differential equations, F M E can deal with other types of models. In this paper, F M E is applied to a model describing the dynamics of the HIV virus.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [31] SENSITIVITY ANALYSIS IN STOCHASTIC FLOW NETWORKS USING THE MONTE-CARLO METHOD
    ALEXOPOULOS, C
    FISHMAN, GS
    [J]. NETWORKS, 1993, 23 (07) : 605 - 621
  • [32] Sensitivity Analysis of the Integral Quality Monitoring System® Using Monte Carlo Simulation
    Oderinde, Oluwaseyi M.
    du Plessis, F. C. P.
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2017, 2017
  • [33] Efficient design and sensitivity analysis of control charts using Monte Carlo simulation
    Fu, MC
    Hu, JQ
    [J]. MANAGEMENT SCIENCE, 1999, 45 (03) : 395 - 413
  • [34] Modelling of an orthovoltage X-ray therapy unit with the EGSnrc Monte Carlo package
    Knoos, Tommy
    af Rosenschold, Per Munck
    Wieslander, Elinore
    [J]. FIRST EUROPEAN WORKSHOP ON MONTE CARLO TREATMENT PLANNING, 2007, 74
  • [35] Monte Carlo vs. Fuzzy Monte Carlo Simulation for Uncertainty and Global Sensitivity Analysis
    Kim, Young-Jin
    [J]. SUSTAINABILITY, 2017, 9 (04):
  • [36] Resolution analysis of general inverse problems through inverse Monte Carlo sampling
    Mosegaard, K
    [J]. INVERSE PROBLEMS, 1998, 14 (03) : 405 - 426
  • [37] Development of a Monte Carlo - Library Least-Squares code package for the EDXRF inverse problem
    Gardner, RP
    Guo, W
    [J]. POWDER DIFFRACTION, 2005, 20 (02) : 146 - 152
  • [38] System uncertainty modelling using Monte Carlo simulation
    Coughlan, L
    Basil, M
    Cox, P
    [J]. MEASUREMENT & CONTROL, 2000, 33 (03): : 78 - 81
  • [39] Modelling dynamic accessories using Monte Carlo methods
    Siljamaeki, S.
    Tillikainen, L.
    Helminen, H.
    Pesola, K.
    Frei, D.
    Volken, W.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2006, 81 : S83 - S84
  • [40] marked: an R package for maximum likelihood and Markov Chain Monte Carlo analysis of capture-recapture data
    Laake, Jeff L.
    Johnson, Devin S.
    Conn, Paul B.
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2013, 4 (09): : 885 - 890