A random multifractal tilling

被引:7
|
作者
Pereira, MG
Corso, G
Lucena, LS
Freitas, JE
机构
[1] Univ Fed Rio Grande do Norte, Int Ctr Complex Syst, Dept Fis Teor & Expt, BR-59078970 Natal, RN, Brazil
[2] Univ Fed Rio Grande do Norte, Ctr Biociencias, Dept Biofis, BR-59072970 Natal, RN, Brazil
关键词
D O I
10.1016/j.chaos.2004.06.045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a multifractal random tilling that fills the square. The multifractal is formed by an arrangement of rectangular blocks of different sizes, areas and number of neighbors. The overall feature of the tilling is an heterogeneous and anisotropic random self-affine object. The multifractal is constructed by an algorithm that makes successive sections of the square. At each n-step there is a random choice of a parameter p(i) related to the section ratio. For the case of random choice between p(1), and p(2) We find analytically the full spectrum of fractal dimensions. (C) 2004 Published by Elsevier Ltd.
引用
收藏
页码:1105 / 1110
页数:6
相关论文
共 50 条
  • [31] EFFECTIVE MULTIFRACTAL SPECTRUM OF A RANDOM-WALK
    BERTHELSEN, CL
    GLAZIER, JA
    RAGHAVACHARI, S
    PHYSICAL REVIEW E, 1994, 49 (03): : 1860 - 1864
  • [32] Multifractal dimensions for critical random matrix ensembles
    Mendez-Bermudez, J. A.
    Alcazar-Lopez, A.
    Varga, Imre
    EPL, 2012, 98 (03)
  • [33] Multifractal spectra of certain random Gibbs measures
    Fan, AH
    Shieh, NR
    STATISTICS & PROBABILITY LETTERS, 2000, 47 (01) : 25 - 31
  • [34] Coupled uncertainty provided by a multifractal random walker
    Lai, Z. Koohi
    Farahani, S. Vasheghani
    Movahed, S. M. S.
    Jafari, G. R.
    PHYSICS LETTERS A, 2015, 379 (38) : 2284 - 2290
  • [35] Apparent scale correlations in a random multifractal process
    Cleve, J.
    Schmiegel, J.
    Greiner, M.
    EUROPEAN PHYSICAL JOURNAL B, 2008, 63 (01): : 109 - 116
  • [36] Apparent scale correlations in a random multifractal process
    J. Cleve
    J. Schmiegel
    M. Greiner
    The European Physical Journal B, 2008, 63 : 109 - 116
  • [37] From random walk to multifractal random walk in zooplankton swimming behavior
    Seuront, L
    Schmitt, FG
    Brewer, MC
    Strickler, JR
    Souissi, S
    ZOOLOGICAL STUDIES, 2004, 43 (02) : 498 - 510
  • [38] Analysis of spherical monofractal and multifractal random fields
    Leonenko, Nikolai
    Nanayakkara, Ravindi
    Olenko, Andriy
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2021, 35 (03) : 681 - 701
  • [39] FORECASTING VOLATILITY WITH THE MULTIFRACTAL RANDOM WALK MODEL
    Duchon, Jean
    Robert, Raoul
    Vargas, Vincent
    MATHEMATICAL FINANCE, 2012, 22 (01) : 83 - 108
  • [40] Optimal transportation for multifractal random measures and applications
    Rhodes, Remi
    Vargas, Vincent
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2013, 49 (01): : 119 - 137