A random multifractal tilling

被引:7
|
作者
Pereira, MG
Corso, G
Lucena, LS
Freitas, JE
机构
[1] Univ Fed Rio Grande do Norte, Int Ctr Complex Syst, Dept Fis Teor & Expt, BR-59078970 Natal, RN, Brazil
[2] Univ Fed Rio Grande do Norte, Ctr Biociencias, Dept Biofis, BR-59072970 Natal, RN, Brazil
关键词
D O I
10.1016/j.chaos.2004.06.045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a multifractal random tilling that fills the square. The multifractal is formed by an arrangement of rectangular blocks of different sizes, areas and number of neighbors. The overall feature of the tilling is an heterogeneous and anisotropic random self-affine object. The multifractal is constructed by an algorithm that makes successive sections of the square. At each n-step there is a random choice of a parameter p(i) related to the section ratio. For the case of random choice between p(1), and p(2) We find analytically the full spectrum of fractal dimensions. (C) 2004 Published by Elsevier Ltd.
引用
收藏
页码:1105 / 1110
页数:6
相关论文
共 50 条
  • [21] Estimating the scaling function of multifractal measures and multifractal random walks using ratios
    Ludena, Carenne
    Soulier, Philippe
    BERNOULLI, 2014, 20 (01) : 334 - 376
  • [22] MULTIFRACTAL ANALYSIS OF RANDOM WEAK GIBBS MEASURES
    Yuan, Zhihui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (10) : 5367 - 5405
  • [23] Multifractal concentrations of heavy particles in random flows
    Bec, Jeremie
    IUTAM SYMPOSIUM ON COMPUTATIONAL APPROACHES TO MULTIPHASE FLOW, 2006, 81 : 43 - 52
  • [24] Analysis of spherical monofractal and multifractal random fields
    Nikolai Leonenko
    Ravindi Nanayakkara
    Andriy Olenko
    Stochastic Environmental Research and Risk Assessment, 2021, 35 : 681 - 701
  • [25] MULTIFRACTAL PROPERTIES OF SNAPSHOT ATTRACTORS OF RANDOM MAPS
    ROMEIRAS, FJ
    GREBOGI, C
    OTT, E
    PHYSICAL REVIEW A, 1990, 41 (02): : 784 - 799
  • [26] MANIFOLDS IN RANDOM-MEDIA - MULTIFRACTAL BEHAVIOR
    GOLDSCHMIDT, YY
    BLUM, T
    PHYSICAL REVIEW E, 1993, 48 (01): : 161 - 170
  • [27] Limit theorems for multifractal products of random fields
    Donhauzer, Illia
    Olenko, Andriy
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
  • [28] Entropy of entanglement and multifractal exponents for random states
    Giraud, O.
    Martin, J.
    Georgeot, B.
    PHYSICAL REVIEW A, 2009, 79 (03):
  • [29] MULTIFRACTAL STRUCTURE OF THE RANDOM BETA-MODEL
    HOSOKAWA, I
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (09) : 3347 - 3348
  • [30] Multifractal Random Walks as Fractional Wiener Integrals
    Abry, Patrice
    Chainais, Pierre
    Coutin, Laure
    Pipiras, Vladas
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (08) : 3825 - 3846