A random multifractal tilling

被引:7
|
作者
Pereira, MG
Corso, G
Lucena, LS
Freitas, JE
机构
[1] Univ Fed Rio Grande do Norte, Int Ctr Complex Syst, Dept Fis Teor & Expt, BR-59078970 Natal, RN, Brazil
[2] Univ Fed Rio Grande do Norte, Ctr Biociencias, Dept Biofis, BR-59072970 Natal, RN, Brazil
关键词
D O I
10.1016/j.chaos.2004.06.045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a multifractal random tilling that fills the square. The multifractal is formed by an arrangement of rectangular blocks of different sizes, areas and number of neighbors. The overall feature of the tilling is an heterogeneous and anisotropic random self-affine object. The multifractal is constructed by an algorithm that makes successive sections of the square. At each n-step there is a random choice of a parameter p(i) related to the section ratio. For the case of random choice between p(1), and p(2) We find analytically the full spectrum of fractal dimensions. (C) 2004 Published by Elsevier Ltd.
引用
收藏
页码:1105 / 1110
页数:6
相关论文
共 50 条
  • [1] Multifractal random walk
    Bacry, E
    Delour, J
    Muzy, JR
    PHYSICAL REVIEW E, 2001, 64 (02):
  • [2] Multidimensional Multifractal Random Measures
    Rhodes, Remi
    Vargas, Vincent
    ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 : 241 - 258
  • [3] Multifractal of random permutation set
    Liu, Shaolong
    Wang, Niu
    Wang, Ningkui
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2025,
  • [4] Multifractal stationary random measures and multifractal random walks with log infinitely divisible scaling laws
    Muzy, JF
    Bacry, E
    PHYSICAL REVIEW E, 2002, 66 (05): : 16
  • [5] MULTIFRACTAL CHARACTERIZATION OF RANDOM RESISTOR AND RANDOM SUPERCONDUCTOR NETWORKS
    LIN, B
    ZHANG, ZZ
    HU, BB
    PHYSICAL REVIEW A, 1991, 44 (02): : 960 - 967
  • [6] MULTIFRACTAL FEATURES OF RANDOM-WALKS ON RANDOM FRACTALS
    BUNDE, A
    HAVLIN, S
    ROMAN, HE
    PHYSICAL REVIEW A, 1990, 42 (10): : 6274 - 6277
  • [7] RENYI FUNCTION FOR MULTIFRACTAL RANDOM FIELDS
    Leonenko, Nikolai N.
    Shieh, Narn-Rueih
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2013, 21 (02)
  • [8] Multifractal analysis of sums of random pulses
    Saes, Guillaume
    Seuret, Stephane
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2023, 175 (03) : 569 - 593
  • [9] Multifractal properties of the random resistor network
    Barthélémy, M.
    Buldyrev, S.V.
    Havlin, S.
    Stanley, H.E.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (04):
  • [10] On the Multifractal Analysis of the Branching Random Walk in
    Attia, Najmeddine
    JOURNAL OF THEORETICAL PROBABILITY, 2014, 27 (04) : 1329 - 1349