General overview on the merits of multimodal neuroimaging data fusion

被引:120
|
作者
Uludag, Kamil [1 ]
Roebroeck, Alard [1 ]
机构
[1] Maastricht Univ, Fac Psychol & Neurosci, Maastricht Brain Imaging Ctr, Dept Cognit Neurosci, NL-6200 MD Maastricht, Netherlands
关键词
SIMULTANEOUS EEG-FMRI; HUMAN BRAIN; MULTIVARIATE METHODS; HEMODYNAMIC SIGNALS; PHYSIOLOGICAL NOISE; OXYGEN-METABOLISM; STEADY-STATE; BOLD-FMRI; IN-VIVO; PET;
D O I
10.1016/j.neuroimage.2014.05.018
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Multimodal neuroimaging has become a mainstay of basic and cognitive neuroscience in humans and animals, despite challenges to consider when acquiring and combining non-redundant imaging data. Multimodal data integration can yield important insights into brain processes and structures in addition to spatiotemporal resolution complementarity, including: a comprehensive physiological view on brain processes and structures, quantification, generalization and normalization, and availability of biomarkers. In this review, we discuss data acquisition and fusion in multimodal neuroimaging in the context of each of these potential merits. However, limitations - due to differences in the neuronal and structural underpinnings of each method - have to be taken into account when modeling and interpreting multimodal data using generative models. We conclude that when these challenges are adequately met, multimodal data fusion can create substantial added value for neuroscience applications making it an indispensable approach for studying the brain. (C) 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
引用
收藏
页码:3 / 10
页数:8
相关论文
共 50 条
  • [31] Spatially Adaptive Varying Correlation Analysis for Multimodal Neuroimaging Data
    Li, Lexin
    Kang, Jian
    Lockhart, Samuel N.
    Adams, Jenna
    Jagust, William J.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (01) : 113 - 123
  • [32] Improved prediction of brain age using multimodal neuroimaging data
    Niu, Xin
    Zhang, Fengqing
    Kounios, John
    Liang, Hualou
    HUMAN BRAIN MAPPING, 2020, 41 (06) : 1626 - 1643
  • [33] A novel biomarker selection method using multimodal neuroimaging data
    Wang, Yue
    Yen, Pei-Shan
    Ajilore, Olusola A.
    Bhaumik, Dulal K.
    PLOS ONE, 2024, 19 (04):
  • [34] Coupled support tensor machine classification for multimodal neuroimaging data
    Li, Peide
    Sofuoglu, Seyyid Emre
    Aviyente, Selin
    Maiti, Tapabrata
    STATISTICAL ANALYSIS AND DATA MINING, 2022, 15 (06) : 797 - 818
  • [35] Multimodal fusion analysis of functional, cerebrovascular and structural neuroimaging in healthy aging subjects
    Liu, Xulin
    Tyler, Lorraine K.
    Rowe, James B.
    Tsvetanov, Kamen A.
    HUMAN BRAIN MAPPING, 2022, 43 (18) : 5490 - 5508
  • [36] Right hemispheric dysfunction in a case of pure progressive aphemia: fusion of multimodal neuroimaging
    Vitali, P
    Nobili, F
    Raiteri, U
    Canfora, M
    Rosa, M
    Calvini, P
    Girtler, N
    Regesta, G
    Rodriguez, G
    PSYCHIATRY RESEARCH-NEUROIMAGING, 2004, 130 (01) : 97 - 107
  • [37] Multimodal neuroimaging fusion biomarkers mediate the association between gut microbiota and cognition
    Zhu, Jiajia
    Wang, Chunli
    Qian, Yinfeng
    Cai, Huanhuan
    Zhang, Shujun
    Zhang, Cun
    Zhao, Wenming
    Zhang, Tingting
    Zhang, Biao
    Chen, Jingyao
    Liu, Siyu
    Yu, Yongqiang
    PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2022, 113
  • [38] NEUROIMAGING - OVERVIEW
    FRACKOWIAK, RSJ
    CURRENT OPINION IN NEUROLOGY AND NEUROSURGERY, 1988, 1 (06): : 963 - 965
  • [39] Multimodal neuroimaging of creativity
    Jung, R. E.
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2008, 69 (03) : 179 - 179
  • [40] MULTIMODAL SUBSPACE INDEPENDENT VECTOR ANALYSIS BETTER CAPTURES HIDDEN RELATIONSHIPS IN MULTIMODAL NEUROIMAGING DATA
    Li, Xinhui
    Adali, Tulay
    Silva, Rogers F.
    Calhoun, Vince D.
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,