A novel biomarker selection method using multimodal neuroimaging data

被引:0
|
作者
Wang, Yue [1 ]
Yen, Pei-Shan [1 ]
Ajilore, Olusola A. [2 ]
Bhaumik, Dulal K. [1 ,2 ]
机构
[1] Univ Illinois, Div Epidemiol & Biostat, Chicago, IL 60607 USA
[2] Univ Illinois, Dept Psychiat, Chicago, IL 60607 USA
来源
PLOS ONE | 2024年 / 19卷 / 04期
关键词
MAJOR DEPRESSIVE DISORDER; LATE-LIFE DEPRESSION; TRANSCRANIAL MAGNETIC STIMULATION; DORSOLATERAL PREFRONTAL CORTEX; CANONICAL CORRELATION-ANALYSIS; STATE FUNCTIONAL CONNECTIVITY; WHITE-MATTER ABNORMALITIES; DEFAULT MODE NETWORK; CINGULATE CORTEX; BRAIN CONNECTIVITY;
D O I
10.1371/journal.pone.0289401
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identifying biomarkers is essential to obtain the optimal therapeutic benefit while treating patients with late-life depression (LLD). We compare LLD patients with healthy controls (HC) using resting-state functional magnetic resonance and diffusion tensor imaging data to identify neuroimaging biomarkers that may be potentially associated with the underlying pathophysiology of LLD. We implement a Bayesian multimodal local false discovery rate approach for functional connectivity, borrowing strength from structural connectivity to identify disrupted functional connectivity of LLD compared to HC. In the Bayesian framework, we develop an algorithm to control the overall false discovery rate of our findings. We compare our findings with the literature and show that our approach can better detect some regions never discovered before for LLD patients. The Hub of our discovery related to various neurobehavioral disorders can be used to develop behavioral interventions to treat LLD patients who do not respond to antidepressants.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Bayesian interaction selection model for multimodal neuroimaging data analysis
    Zhao, Yize
    Wu, Ben
    Kang, Jian
    BIOMETRICS, 2023, 79 (02) : 655 - 668
  • [2] Advances in multimodal data fusion in neuroimaging: Overview, challenges, and novel orientation
    Zhang, Yu-Dong
    Dong, Zhengchao
    Wang, Shui-Hua
    Yu, Xiang
    Yao, Xujing
    Zhou, Qinghua
    Hu, Hua
    Li, Min
    Jimenez-Mesa, Carmen
    Ramirez, Javier
    Martinez, Francisco J.
    Gorriz, Juan Manuel
    INFORMATION FUSION, 2020, 64 (149-187) : 149 - 187
  • [3] Improved prediction of brain age using multimodal neuroimaging data
    Niu, Xin
    Zhang, Fengqing
    Kounios, John
    Liang, Hualou
    HUMAN BRAIN MAPPING, 2020, 41 (06) : 1626 - 1643
  • [4] Developing Multimodal Dynamic Functional Connectivity as a Neuroimaging Biomarker
    Kundu, Suprateek
    Ming, Jin
    Stevens, Jennifer
    BRAIN CONNECTIVITY, 2021, 11 (07) : 529 - 542
  • [5] Certainly Not the First Neuroimaging Treatment Selection Biomarker
    Henderson, Theodore
    Tarzwell, Robert
    JAMA PSYCHIATRY, 2014, 71 (02) : 210 - 211
  • [6] An Optimal Feature Selection Method for Human Activity Recognition Using Multimodal Sensory Data
    Haider, Tazeem
    Khan, Muhammad Hassan
    Farid, Muhammad Shahid
    INFORMATION, 2024, 15 (10)
  • [7] Novel Regularization Method for Biomarker Selection and Cancer Classification
    Liu, Xiao-Ying
    Wang, Sai
    Zhang, Hai
    Zhang, Hui
    Yang, Zi-Yi
    Liang, Yong
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (04) : 1329 - 1340
  • [8] Multimodal neuroimaging data integration and pathway analysis
    Zhao, Yi
    Li, Lexin
    Caffo, Brian S.
    BIOMETRICS, 2021, 77 (03) : 879 - 889
  • [9] Pypes: Workflows for Processing Multimodal Neuroimaging Data
    Savio, Alexandre M.
    Schutte, Michael
    Grana, Manuel
    Yakushev, Igor
    FRONTIERS IN NEUROINFORMATICS, 2017, 11
  • [10] Fusing multimodal neuroimaging data with a variational autoencoder
    Geenjaar, Eloy
    Lewis, Noah
    Fu, Zening
    Venkatdas, Rohan
    Plis, Sergey
    Calhoun, Vince
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3630 - 3633