Quantum estimates in two variable forms for Simpson-type inequalities considering generalized ψ-convex functions with applications

被引:3
|
作者
Chu, Yu-Ming [2 ]
Rauf, Asia [3 ]
Rashid, Saima [1 ]
Batool, Safeera [4 ]
Hamed, Y. S. [5 ]
机构
[1] Govt Coll Univ, Dept Math, Faisalabad, Pakistan
[2] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[3] Govt Coll Women Univ, Dept Math, Faisalabad, Pakistan
[4] Univ Engn & Technol, Dept Math, Taxila, Pakistan
[5] Taif Univ, Coll Sci, Dept Math, POB 11099, At Taif 21944, Saudi Arabia
来源
OPEN PHYSICS | 2021年 / 19卷 / 01期
基金
中国国家自然科学基金;
关键词
quantum calculus; generalized psi-convex func-tions; Simpson's inequality; Raina's function; Mittag- Leffler function; hypergeometric function; HERMITE-HADAMARD INEQUALITIES; DIFFERENTIABLE MAPPINGS; REAL NUMBERS;
D O I
10.1515/phys-2021-0031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article proposes a new approach based on quantum calculus framework employing novel classes of higher order strongly generalized psi-convex and quasiconvex functions. Certain pivotal inequalities of Simpsontype to estimate innovative variants under the q1, q2-integral and derivative scheme that provides a series of variants correlate with the special Raina's functions. Meanwhile, a q1, q2-integral identity is presented, and new theorems with novel strategies are provided. As an application viewpoint, we tend to illustrate two-variable q1q2-integral identities and variants of Simpson-type in the sense of hypergeometric and Mittag-Leffler functions and prove the feasibility and relevance of the proposed approach. This approach is supposed to be reliable and versatile, opening up new avenues for the application
引用
收藏
页码:305 / 326
页数:22
相关论文
共 50 条
  • [21] ON INEQUALITIES OF SIMPSON?S TYPE FOR CONVEX FUNCTIONS VIA GENERALIZED FRACTIONAL INTEGRALS
    Kara, Hasan
    Budak, Huseyin
    Ali, Muhammad Aamir
    Hezenci, Fatih
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (03): : 806 - 825
  • [22] Quantum simpson like type inequalities for q-differentiable convex functions
    Meftah, Badreddine
    Souahi, Abdourazek
    Merad, Meriem
    JOURNAL OF ANALYSIS, 2024, 32 (03): : 1331 - 1365
  • [23] Post-quantum Simpson's type inequalities for coordinated convex functions
    You, Xue-Xiao
    Ali, Muhammad Aamir
    Murtaza, Ghulam
    Chasreechai, Saowaluck
    Ntouyas, Sotiris K.
    Sitthiwirattham, Thanin
    AIMS MATHEMATICS, 2021, 7 (02): : 3097 - 3132
  • [24] New Simpson Type Integral Inequalities for s-Convex Functions and Their Applications
    Kashuri, Artion
    Mohammed, Pshtiwan Othman
    Abdeljawad, Thabet
    Hamasalh, Faraidun
    Chu, Yuming
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [25] ON NEW INEQUALITIES OF SIMPSON'S TYPE FOR QUASI-CONVEX FUNCTIONS WITH APPLICATIONS
    Set, Erhan
    Ozdemir, M. Emin
    Sarikaya, Mehmet Zeki
    TAMKANG JOURNAL OF MATHEMATICS, 2012, 43 (03): : 357 - 364
  • [26] New Inequalities of Simpson's type for differentiable functions via generalized convex function
    Farooq, Shan E.
    Shabir, Khurram
    Qaisar, Shahid
    Ahmad, Farooq
    Almatroud, O. A.
    COMPTES RENDUS MATHEMATIQUE, 2021, 359 (02) : 137 - 147
  • [27] INEQUALITIES OF FEJER TYPE RELATED TO GENERALIZED CONVEX FUNCTIONS WITH APPLICATIONS
    Aslani, S. Mohammadi
    Delavar, M. Rostamian
    Vaezpour, S. M.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2018, 16 (01): : 38 - 49
  • [28] On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integrals
    Budak, Huseyin
    Hezenci, Fatih
    Kara, Hasan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (17) : 12522 - 12536
  • [29] Dual Simpson type inequalities for multiplicatively convex functions
    Meftah, Badreddine
    Lakhdari, Abdelghani
    FILOMAT, 2023, 37 (22) : 7673 - 7683
  • [30] Some new Simpson's type inequalities for coordinated convex functions in quantum calculus
    Ali, Muhammad Aamir
    Budak, Huseyin
    Zhang, Zhiyue
    Yildirim, Huseyin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) : 4515 - 4540