Alloyed β-(AlxGa1-x)2O3 bulk Czochralski single β-(Al0.1Ga0.9)2O3 and polycrystals β-(Al0.33Ga0.66)2O3, β-(Al0.5Ga0.5)2O3), and property trends

被引:20
|
作者
Jesenovec, Jani [1 ,2 ]
Dutton, Benjamin [1 ,2 ]
Stone-Weiss, Nicholas [1 ]
Chmielewski, Adrian [3 ]
Saleh, Muad [1 ,2 ]
Peterson, Carl [4 ]
Alem, Nasim [3 ]
Krishnamoorthy, Sriram [4 ]
McCloy, John S. [1 ,2 ]
机构
[1] Washington State Univ, Inst Mat Res, Pullman, WA 99164 USA
[2] Washington State Univ, Mat Sci & Engn Program, Pullman, WA 99164 USA
[3] Penn State Univ, Mat Res Inst, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[4] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93106 USA
关键词
THIN-FILMS; BETA-GA2O3; GROWTH; MODULATION; MOBILITY;
D O I
10.1063/5.0073502
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this work, bulk Czochralski-grown single crystals of 10 mol. % Al2O3 alloyed beta-Ga2O3-monoclinic 10% AGO or beta-(Al0.1Ga0.9)(2)O-3-are obtained, which show +0.20 eV increase in the bandgap compared with unintentionally doped beta-Ga2O3. Further, growths of 33% AGO-beta-(Al0.33Ga0.67)(2)O-3-and 50% AGO-beta-(Al0.5Ga0.5)(2)O-3 or beta-AlGaO3-produce polycrystalline single-phase monoclinic material (beta-AGO). All three compositions are investigated by x-ray diffraction, Raman spectroscopy, optical absorption, and Al-27 nuclear magnetic resonance (NMR). By investigating single phase beta-AGO over a large range of Al2O3 concentrations (10-50 mol. %), broad trends in the lattice parameter, vibrational modes, optical bandgap, and crystallographic site preference are determined. All lattice parameters show a linear trend with Al incorporation. According to NMR, aluminum incorporates on both crystallographic sites of beta-Ga2O3, with a slight preference for the octahedral (Ga-II) site, which becomes more disordered with increasing Al. Single crystals of 10% AGO were also characterized by x-ray rocking curve, transmission electron microscopy, purity (glow discharge mass spectroscopy and x-ray fluorescence), optical transmission (200 nm-20 mu m wavelengths), and resistivity. These measurements suggest that electrical compensation by impurity acceptor doping is not the likely explanation for high resistivity, but rather the shift of a hydrogen level from a shallow donor to a deep acceptor due to Al alloying. Bulk crystals of beta-(Al0.1Ga0.9)(2)O-3 have the potential to be ultra-wide bandgap substrates for thin film growth, with a lattice parameter that may even allow higher Al concentration beta-Ga2O3 single crystal thin films to be grown.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [41] Low Resistance Ohmic Contact on Epitaxial MOVPE Grown β-Ga2O3 and β-(AlxGa1-x)2O3 Films
    Alema, Fikadu
    Peterson, Carl
    Bhattacharyya, Arkka
    Roy, Saurav
    Krishnamoorthy, Sriram
    Osinsky, Andrei
    IEEE ELECTRON DEVICE LETTERS, 2022, 43 (10) : 1649 - 1652
  • [42] Metalorganic chemical vapor deposition of β-(AlxGa1-x)2O3 thin films on (001) β-Ga2O3 substrates
    Uddin Bhuiyan, A. F. M. Anhar
    Meng, Lingyu
    Huang, Hsien-Lien
    Sarker, Jith
    Chae, Chris
    Mazumder, Baishakhi
    Hwang, Jinwoo
    Zhao, Hongping
    APL MATERIALS, 2023, 11 (04)
  • [43] Optical properties of (AlxGa1-x)2O3 on sapphire
    Hu, Zhuangzhuang
    Feng, Qian
    Zhang, Jincheng
    Li, Fuguo
    Li, Xiang
    Feng, Zhaoqing
    Zhang, Chunfu
    Hao, Yue
    SUPERLATTICES AND MICROSTRUCTURES, 2018, 114 : 82 - 88
  • [44] Growth characteristics of corundum-structured α-(AlxGa1-x)2O3/Ga2O3 heterostructures on sapphire substrates
    Kaneko, Kentaro
    Suzuki, Kenta
    Ito, Yoshito
    Fujita, Shizuo
    JOURNAL OF CRYSTAL GROWTH, 2016, 436 : 150 - 154
  • [45] Polarization engineering of two-dimensional electron gas at ε-(AlxGa1-x)2O3/ε-Ga2O3 heterostructure
    Wang, Yan
    Cao, Jiahe
    Song, Hanzhao
    Zhang, Chuang
    Xie, Zhigao
    Wong, Yew Hoong
    Tan, Chee Keong
    APPLIED PHYSICS LETTERS, 2023, 123 (14)
  • [46] Carrier confinement observed at modulation-doped β-(AlxGa1-x)2O3/Ga2O3 heterojunction interface
    Oshima, Takayoshi
    Kato, Yuji
    Kawano, Naoto
    Kuramata, Akito
    Yamakoshi, Shigenobu
    Fujita, Shizuo
    Oishi, Toshiyuki
    Kasu, Makoto
    APPLIED PHYSICS EXPRESS, 2017, 10 (03)
  • [47] The Heteroepitaxy of Thick β-Ga2O3 Film on Sapphire Substrate with a β-(AlxGa1-x)2O3 Intermediate Buffer Layer
    Zhang, Wenhui
    Zhang, Hezhi
    Zhang, Song
    Wang, Zishi
    Liu, Litao
    Zhang, Qi
    Hu, Xibing
    Liang, Hongwei
    MATERIALS, 2023, 16 (07)
  • [48] 混晶β-(Al,Ga)2O3的禁带调节(英文)
    肖海林
    邵刚勤
    赛青林
    夏长泰
    周圣明
    易学专
    无机材料学报, 2016, 31 (11) : 1258 - 1262
  • [49] Silicon Ion Implant Activation in β-(Al0.2Ga0.8)2O3
    Jacobs, Alan G.
    Spencer, Joseph A.
    Tadjer, Marko J.
    Feigelson, Boris N.
    Lamb, Abbey
    Lee, Ming-Hsun
    Peterson, Rebecca L.
    Alema, Fikadu
    Osinsky, Andrei
    Zhang, Yuhao
    Hobart, Karl D.
    Anderson, Travis J.
    JOURNAL OF ELECTRONIC MATERIALS, 2024, 53 (06) : 2811 - 2816
  • [50] STRUCTURAL CHARACTERIZATION OF BULK (AlXGa1-X)2O3 CRYSTALS GROWN BY THE CZOCHRALSKI METHOD
    Kremleva, A., V
    Kirilenko, D. A.
    Smirnova, I. G.
    Bougrov, V. E.
    Romanov, A. E.
    MATERIALS PHYSICS AND MECHANICS, 2019, 42 (06): : 797 - 801