Multicrystalline silicon solar cells with low rear surface recombination

被引:2
|
作者
Stocks, M [1 ]
Blakers, A [1 ]
Cuevas, A [1 ]
机构
[1] Australian Natl Univ, Ctr Sustainable Energy Syst, Dept Engn, Canberra, ACT 0200, Australia
关键词
D O I
10.1109/PVSC.1997.653926
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Improvements in the manufacture of multicrystalline silicon (me-Si) and processing induced impurity gettering have enabled the demonstration of diffusion lengths in mo-Si much greater than the substrate thickness. High recombination velocities at the rear surface, rather than bulk recombination, can then limit cell efficiency. The traditional n(+)/p/p(+) cell structure (produced with aluminium alloying) is therefore less suitable for high lifetime material due to high effective rear surface recombination velocities. Rear surface recombination can be reduced by reducing the rear metal contact area and passivating most of the rear with thermal oxides. Record open circuit voltages (654mV) and high efficiencies (18.2%) are demonstrated with 4cm(2) cells on 0.5 Omega cm Eurosil substrates. Cells with local boron diffusions under the rear contacts also demonstrate high efficiencies.
引用
收藏
页码:67 / 70
页数:4
相关论文
共 50 条
  • [31] Copper precipitates in multicrystalline silicon for solar cells
    Li, Xiaoqiang
    Yang, Deren
    Yu, Xuegong
    Que, Duanlin
    [J]. CHINA SEMICONDUCTOR TECHNOLOGY INTERNATIONAL CONFERENCE 2010 (CSTIC 2010), 2010, 27 (01): : 1135 - 1140
  • [32] Front side recombination losses analysis in rear emitter silicon heterojunction solar cells
    Varache, Renaud
    Valla, Anthony
    Nguyen, Nathalie
    Munoz, Delfina
    [J]. PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS (SILICONPV 2014), 2014, 55 : 302 - 309
  • [33] Temperature Sensitivity of Multicrystalline Silicon Solar Cells
    Berthod, Charly
    Kristensen, Sissel Tind
    Strandberg, Rune
    Odden, Jan Ove
    Nie, Shuai
    Hameiri, Ziv
    Saetre, Tor Oskar
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2019, 9 (04): : 957 - 964
  • [34] Texturing industrial multicrystalline silicon solar cells
    Macdonald, DH
    Cuevas, A
    Kerr, MJ
    Samundsett, C
    Ruby, D
    Winderbaum, S
    Leo, A
    [J]. SOLAR ENERGY, 2004, 76 (1-3) : 277 - 283
  • [35] Macroporous texturing of multicrystalline silicon for solar cells
    Lipinski, M.
    [J]. ARCHIVES OF METALLURGY AND MATERIALS, 2008, 53 (01) : 185 - 187
  • [36] Industrial technology of multicrystalline silicon solar cells
    Panek, P
    Lipinski, M
    Beltowska-Lehman, E
    Drabczyk, K
    Ciach, R
    [J]. OPTO-ELECTRONICS REVIEW, 2003, 11 (04) : 269 - 275
  • [37] Defect passivation in multicrystalline silicon for solar cells
    Tarasov, I
    Ostapenko, S
    Nakayashiki, K
    Rohatgi, A
    [J]. APPLIED PHYSICS LETTERS, 2004, 85 (19) : 4346 - 4348
  • [38] RIE surface texturing for optimum light trapping in multicrystalline silicon solar cells
    Jinsu Yoo
    Junsik Cho
    Kyumin Han
    Junsin Yi
    [J]. Journal of the Korean Physical Society, 2012, 60 : 2071 - 2074
  • [39] Surface texturing using reactive ion etching for multicrystalline silicon solar cells
    Fukui, K
    Inomata, Y
    Shirasawa, K
    [J]. CONFERENCE RECORD OF THE TWENTY SIXTH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE - 1997, 1997, : 47 - 50
  • [40] Reduced Temperature Sensitivity of Multicrystalline Silicon Solar Cells with Low Ingot Resistivity
    Berthod, Charly
    Strandberg, Rune
    Odden, Jan Ove
    Saetre, Tor Oskar
    [J]. 2016 IEEE 43RD PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2016, : 2398 - 2402