Industrial technology of multicrystalline silicon solar cells

被引:0
|
作者
Panek, P
Lipinski, M
Beltowska-Lehman, E
Drabczyk, K
Ciach, R
机构
[1] Polish Acad Sci, Inst Met & Mat Sci, PL-30059 Krakow, Poland
[2] Silesian Tech Univ, Inst Elect, PL-44100 Gliwice, Poland
关键词
solar cells; multicrystalline silicon; industrial technology;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents cut-rent technology used to produce 100 cm(2) multicrystalline silicon solar cells of efficiency above 13% which was one of the main goals of the National Photovoltaic Project undertaken in the Institute of Metallurgy and Materials Science (IMMS). The general concept of the technology consists of maximum seven steps. The process sequence is based on diffusion from POCl3 and screen printed contacts fired through a PECVD SixNy or TiOx antireflection coating (ARC). Co-metallisation annealing was performed in an IR furnace. The multicrystalline wafers are described using four-point probe, scanning electron microscopy (SEM), secondary ion mass spectrometer, and spectrophotometer with an integrating sphere. The completed solar cells are characterized with internal spectral response and a current-voltage characteristic. All aspects playing a role in a suitable manufacturing process are discussed. At present, multicrystalline silicon solar cells capture around a 45% share of the world photovoltaics market with a total of 540 MW being produced in 2002. Taking into account the decreasing cost of multicrystalline substrates, this relation will rise systematically.
引用
收藏
页码:269 / 275
页数:7
相关论文
共 50 条
  • [1] Industrial applications of a novel technology for commercial multicrystalline silicon solar cells
    Wang, Enyu
    Yang, Hong
    Wang, He
    Dong, Jianming
    Liu, Jin
    Zhao, Kewei
    Gong, Chun
    Teppe, Andreas
    [J]. 2015 IEEE 42ND PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2015,
  • [2] Texturing industrial multicrystalline silicon solar cells
    Macdonald, DH
    Cuevas, A
    Kerr, MJ
    Samundsett, C
    Ruby, D
    Winderbaum, S
    Leo, A
    [J]. SOLAR ENERGY, 2004, 76 (1-3) : 277 - 283
  • [3] Characterization of PII textured industrial multicrystalline silicon solar cells
    Liu, Jie
    Liu, Bangwu
    Shen, Zenan
    Liu, Jinhu
    Zhong, Sihua
    Liu, Su
    Li, Chaobo
    Xia, Yang
    [J]. SOLAR ENERGY, 2012, 86 (10) : 3004 - 3008
  • [4] RIE-texturing of industrial multicrystalline silicon solar cells
    Ruby, DS
    Zaidi, S
    Narayanan, S
    Yamanaka, S
    Balanga, R
    [J]. JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2005, 127 (01): : 146 - 149
  • [5] Multicrystalline silicon for solar cells
    Möller, HJ
    Funke, C
    Rinio, M
    Scholz, S
    [J]. THIN SOLID FILMS, 2005, 487 (1-2) : 179 - 187
  • [6] Industrial rear SiN-passivated multicrystalline silicon solar cells
    Rinio, Markus
    Borchert, Dietmar
    Mueller, Stefan
    Riepe, Stephan
    Toelle, Rainer
    Janssen, Lars
    Kurz, Heinrich
    [J]. CONFERENCE RECORD OF THE 2006 IEEE 4TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION, VOLS 1 AND 2, 2006, : 1275 - +
  • [7] Dielectric rear surface passivation for industrial multicrystalline silicon solar cells
    Schultz, O.
    Rentsch, J.
    Grohe, A.
    Glunz, S. W.
    Willeke, G. P.
    [J]. CONFERENCE RECORD OF THE 2006 IEEE 4TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION, VOLS 1 AND 2, 2006, : 885 - 889
  • [8] RIE-texturing of industrial multicrystalline silicon solar-cells
    Ruby, DS
    Zaidi, SH
    Narayanan, S
    Bathey, B
    Yamanaka, S
    Balanga, R
    [J]. CONFERENCE RECORD OF THE TWENTY-NINTH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE 2002, 2002, : 146 - 149
  • [9] Production technology of large-area multicrystalline silicon solar cells
    Fujii, S
    Fukawa, Y
    Takahashi, H
    Inomata, Y
    Okada, K
    Fukui, K
    Shirasawa, K
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2001, 65 (1-4) : 269 - 275
  • [10] Twinning in multicrystalline silicon for solar cells
    Stokkan, G.
    [J]. JOURNAL OF CRYSTAL GROWTH, 2013, 384 : 107 - 113