The hyper-Wiener index of graphs with given bipartition

被引:0
|
作者
Feng, Lihua [1 ]
Liu, Weijun [1 ]
Yu, Guihai [1 ]
Li, Shudong [2 ]
机构
[1] Cent S Univ, Dept Math, Changsha 410083, Hunan, Peoples R China
[2] Natl Univ Def Technol, Sch Comp Sci, Changsha 410073, Hunan, Peoples R China
关键词
UNICYCLIC GRAPHS; MATCHING NUMBER; TREES; PROPERTY; HARARY; ZAGREB;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple connected graph. The Wiener index W(G) is the sum of all distances between vertices of G, whereas the hyper-Wiener index WW(G) is defined as WW(G) = 1/2 Sigma({u,v}subset of V(G))(d(u,v) + d(2)(u,v)), with the summation going over all pairs of vertices in G. In this paper, we obtain the sharp upper or lower bounds for the hyper-Wiener indices among trees or bipartite unicyclic graphs with given bipartition, we also characterize the corresponding extremal graphs.
引用
收藏
页码:23 / 32
页数:10
相关论文
共 50 条
  • [41] The hyper-Wiener index of graph operations
    Khalifeh, M. H.
    Yousefi-Azari, H.
    Ashrafi, A. R.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (05) : 1402 - 1407
  • [42] The hyper-Wiener Index of diamond nanowires
    Nagy, Benedek
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2024, 124 (01)
  • [43] Fractal version of hyper-Wiener index
    Lu, Ying
    Xu, Jiajun
    Xi, Lifeng
    CHAOS SOLITONS & FRACTALS, 2023, 166
  • [44] Hyper-Wiener index for acyclic structures
    A. A. Dobrynin
    I. Gutman
    V. N. Piottukh-Peletskii
    Journal of Structural Chemistry, 1999, 40 : 293 - 298
  • [45] On the Steiner hyper-Wiener index of a graph
    Tratnik, Niko
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 337 : 360 - 371
  • [46] Hyper-wiener index of graphs with more than one cut-vertex
    Liu, Chunqi
    Peng, Jian
    Journal of Computational and Theoretical Nanoscience, 2015, 12 (10) : 3956 - 3958
  • [47] Computing Wiener and hyper-Wiener indices of unitary Cayley graphs
    Loghman, Amir
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2012, 3 (02): : 121 - 125
  • [48] The Steiner Wiener Index of Trees with Given Bipartition
    Li, Zhonghua
    Wu, Baoyindureng
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2021, 86 (02) : 363 - 373
  • [49] The hyper-Wiener index of unicyclic graphs with n vertices and k pendent vertices
    Cai, Gai-Xiang
    Yu, Gui-Dong
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2016, 19 (01): : 57 - 65
  • [50] Correction to The hyper-Wiener index of diamond nanowires
    International Journal of Quantum Chemistry, 125 (03):