The hyper-Wiener index of graphs with given bipartition

被引:0
|
作者
Feng, Lihua [1 ]
Liu, Weijun [1 ]
Yu, Guihai [1 ]
Li, Shudong [2 ]
机构
[1] Cent S Univ, Dept Math, Changsha 410083, Hunan, Peoples R China
[2] Natl Univ Def Technol, Sch Comp Sci, Changsha 410073, Hunan, Peoples R China
关键词
UNICYCLIC GRAPHS; MATCHING NUMBER; TREES; PROPERTY; HARARY; ZAGREB;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple connected graph. The Wiener index W(G) is the sum of all distances between vertices of G, whereas the hyper-Wiener index WW(G) is defined as WW(G) = 1/2 Sigma({u,v}subset of V(G))(d(u,v) + d(2)(u,v)), with the summation going over all pairs of vertices in G. In this paper, we obtain the sharp upper or lower bounds for the hyper-Wiener indices among trees or bipartite unicyclic graphs with given bipartition, we also characterize the corresponding extremal graphs.
引用
收藏
页码:23 / 32
页数:10
相关论文
共 50 条
  • [31] Hyper-Wiener index and Laplacian spectrum
    Gutman, I
    JOURNAL OF THE SERBIAN CHEMICAL SOCIETY, 2003, 68 (12) : 949 - 952
  • [32] A New Version of Hyper-Wiener Index
    Iranmanesh, Ali
    Kafrani, A. Soltani
    Khormali, Omid
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2011, 65 (01) : 113 - 122
  • [33] Condensed extended hyper-Wiener index
    Li Xin-Hua
    Jalbout, Abraham F.
    Ji Zhi
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2008, 27 (09) : 1134 - 1140
  • [34] The maximum hyper-Wiener index of cacti
    Wang D.-F.
    Tan S.-W.
    Journal of Applied Mathematics and Computing, 2015, 47 (1-2) : 91 - 102
  • [35] FORMULAS FOR THE HYPER-WIENER INDEX OF TREES
    LUKOVITS, I
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1994, 34 (05): : 1079 - 1081
  • [36] Hyper-wiener index and graph properties
    Yu, Guidong
    Ren, Lifang
    Li, Xingxing
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2018, 107 : 97 - 108
  • [37] Modified hyper-Wiener index of trees
    Altindag, S. B. Bozkurt
    Milovanovic, I. Z.
    Milovanovic, E. I.
    Matejic, M. M.
    DISCRETE APPLIED MATHEMATICS, 2023, 334 : 101 - 109
  • [38] Hyper-Wiener index for acyclic structures
    Dobrynin, AA
    Gutman, I
    Piottukh-Peletskii, VN
    JOURNAL OF STRUCTURAL CHEMISTRY, 1999, 40 (02) : 293 - 298
  • [39] The nine smallest hyper-Wiener indices of trees and the eight smallest hyper-Wiener (Wiener) indices of unicyclic graphs
    Liu, Muhuo
    Liu, Bolian
    UTILITAS MATHEMATICA, 2014, 95 : 129 - 139
  • [40] Condensed Extended Hyper-Wiener Index
    李新华
    Abraham F.Jalbout
    吉智
    Chinese Journal of Structural Chemistry, 2008, (09) : 1134 - 1140