Clifford analysis on spheres and hyperbolae

被引:0
|
作者
Ryan, J [1 ]
机构
[1] Univ Arkansas, Dept Math, Fayetteville, AR 72701 USA
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop aspects of Clifford analysis over the sphere and hyperbolae. We focus primarily on the hyperbola lying in the Minkowski type space R-n.1. We show that in order to give a proper extension of basic results on Clifford analysis in Euclidean space to this context one needs to consider both hyperbolae lying in R-n.1. We also introduce Bergman spaces of LP left monogenic sections in this context and consider the decomposition of square integrable sections over suitable bundles constructed over subdomains of spheres and hyperbolae. The results presented here cover the necessary background to enable one to set up and solve boundary value problems for field-type equations over hyperbolae. In particular, one can study analogues of the Dirichlet problem for analogues of the Laplacian over hyperbolae and spheres. (C) 1997 by B. G. Teubner Stuttgart-John Wiley & Sons Ltd.
引用
收藏
页码:1615 / 1622
页数:8
相关论文
共 50 条
  • [41] Associated Spaces in Clifford Analysis
    Yanett Bolívar
    Licet Lezama
    Luis Gerardo Mármol
    Judith Vanegas
    Advances in Applied Clifford Algebras, 2015, 25 : 539 - 551
  • [42] Inverse scattering and Clifford analysis
    Bernstein Swanhild
    Advances in Applied Clifford Algebras, 2001, 11 (Suppl 2) : 21 - 30
  • [43] Variational problems in Clifford analysis
    Dubinskii, J
    Reissig, M
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2002, 25 (14) : 1161 - 1176
  • [44] Hilbert Transforms in Clifford Analysis
    Brackx, Fred
    De Knock, Bram
    De Schepper, Hennie
    GEOMETRIC ALGEBRA COMPUTING: IN ENGINEERING AND COMPUTER SCIENCE, 2010, : 163 - 187
  • [45] Hermitian Clifford Analysis on Superspace
    De Schepper, Hennie
    Adan, Ali Guzman
    Sommen, Frank
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2018, 28 (01)
  • [46] Rotations in discrete Clifford analysis
    De Ridder, H.
    Raeymaekers, T.
    Sommen, F.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 285 : 114 - 140
  • [47] The Fourier Transform in Clifford Analysis
    Brackx, Fred
    De Schepper, Nelle
    Sommen, Frank
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 156, 2009, 156 : 55 - 201
  • [48] Quaternionic complexes in Clifford analysis
    Somberg, P
    CLIFFORD ANALYSIS AND ITS APPLICATIONS, 2001, 25 : 293 - 301
  • [49] DUALITY IN COMPLEX CLIFFORD ANALYSIS
    RYAN, J
    JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 61 (02) : 117 - 135
  • [50] Associated Spaces in Clifford Analysis
    Bolivar, Yanett
    Lezama, Licet
    Marmol, Luis Gerardo
    Vanegas, Judith
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2015, 25 (03) : 539 - 551