Clifford analysis on spheres and hyperbolae

被引:0
|
作者
Ryan, J [1 ]
机构
[1] Univ Arkansas, Dept Math, Fayetteville, AR 72701 USA
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop aspects of Clifford analysis over the sphere and hyperbolae. We focus primarily on the hyperbola lying in the Minkowski type space R-n.1. We show that in order to give a proper extension of basic results on Clifford analysis in Euclidean space to this context one needs to consider both hyperbolae lying in R-n.1. We also introduce Bergman spaces of LP left monogenic sections in this context and consider the decomposition of square integrable sections over suitable bundles constructed over subdomains of spheres and hyperbolae. The results presented here cover the necessary background to enable one to set up and solve boundary value problems for field-type equations over hyperbolae. In particular, one can study analogues of the Dirichlet problem for analogues of the Laplacian over hyperbolae and spheres. (C) 1997 by B. G. Teubner Stuttgart-John Wiley & Sons Ltd.
引用
收藏
页码:1615 / 1622
页数:8
相关论文
共 50 条
  • [31] MOBIUS GROUPS OVER GENERAL FIELDS USING CLIFFORD ALGEBRAS ASSOCIATED WITH SPHERES
    FILLMORE, JP
    SPRINGER, A
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1990, 29 (03) : 225 - 246
  • [32] Hyperbolae Are No Hyperbole: Modelling Communities That Are Not Cliques
    Metzler, Saskia
    Guennemann, Stephan
    Miettinen, Pauli
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 330 - 339
  • [33] Bergman projection in Clifford analysis
    Ren, GB
    Malonek, HR
    CLIFFORD ALGEBRAS: APPLICATIONS TO MATHEMATICS, PHYSICS, AND ENGINEERING, 2004, 34 : 125 - 139
  • [34] A Clifford analysis approach to superspace
    De Bie, H.
    Sommen, F.
    ANNALS OF PHYSICS, 2007, 322 (12) : 2978 - 2993
  • [35] Paracomplex Hermitean Clifford Analysis
    Ren, Guangbin
    Wang, Haiyan
    Chen, Lin
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (06) : 1367 - 1382
  • [36] Commutative algebras in Clifford analysis
    Krasnov, Y
    PROGRESS IN ANALYSIS, VOLS I AND II, 2003, : 349 - 359
  • [37] Inequalities in the Setting of Clifford Analysis
    Jamel El Kamel
    Rim Jday
    Mathematical Physics, Analysis and Geometry, 2018, 21
  • [38] Convolution kernels in Clifford analysis
    Brackx, F
    De Schepper, H
    ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 486 - 489
  • [39] Invariant operators and clifford analysis
    Vladimír Souček
    Advances in Applied Clifford Algebras, 2001, 11 (Suppl 1) : 37 - 52
  • [40] On Fundamental Solutions in Clifford Analysis
    F. Brackx
    H. De Schepper
    M. E. Luna-Elizarrarás
    M. Shapiro
    Complex Analysis and Operator Theory, 2012, 6 : 325 - 339