Unified Bayesian theory of sparse linear regression with nuisance parameters

被引:5
|
作者
Jeong, Seonghyun [1 ]
Ghosal, Subhashis [2 ]
机构
[1] Yonsei Univ, Dept Appl Stat, Dept Stat & Data Sci, Seoul 03722, South Korea
[2] North Carolina State Univ, Dept Stat, Raleigh, NC 27607 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2021年 / 15卷 / 01期
关键词
Bernstein-von Mises theorems; High-dimensional regression; Model selection consistency; Posterior contraction rates; Sparse priors; POSTERIOR CONCENTRATION; CONVERGENCE-RATES; SELECTION;
D O I
10.1214/21-EJS1855
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study frequentist asymptotic properties of Bayesian procedures for high-dimensional Gaussian sparse regression when unknown nuisance parameters are involved. Nuisance parameters can be finite-, high-, or infinite-dimensional. A mixture of point masses at zero and continuous distributions is used for the prior distribution on sparse regression coefficients, and appropriate prior distributions are used for nuisance parameters. The optimal posterior contraction of sparse regression coefficients, hampered by the presence of nuisance parameters, is also examined and discussed. It is shown that the procedure yields strong model selection consistency. A Bernstein-von Mises-type theorem for sparse regression coefficients is also obtained for uncertainty quantification through credible sets with guaranteed frequentist coverage. Asymptotic properties of numerous examples are investigated using the theory developed in this study.
引用
收藏
页码:3040 / 3111
页数:72
相关论文
共 50 条