Unified Bayesian theory of sparse linear regression with nuisance parameters

被引:5
|
作者
Jeong, Seonghyun [1 ]
Ghosal, Subhashis [2 ]
机构
[1] Yonsei Univ, Dept Appl Stat, Dept Stat & Data Sci, Seoul 03722, South Korea
[2] North Carolina State Univ, Dept Stat, Raleigh, NC 27607 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2021年 / 15卷 / 01期
关键词
Bernstein-von Mises theorems; High-dimensional regression; Model selection consistency; Posterior contraction rates; Sparse priors; POSTERIOR CONCENTRATION; CONVERGENCE-RATES; SELECTION;
D O I
10.1214/21-EJS1855
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study frequentist asymptotic properties of Bayesian procedures for high-dimensional Gaussian sparse regression when unknown nuisance parameters are involved. Nuisance parameters can be finite-, high-, or infinite-dimensional. A mixture of point masses at zero and continuous distributions is used for the prior distribution on sparse regression coefficients, and appropriate prior distributions are used for nuisance parameters. The optimal posterior contraction of sparse regression coefficients, hampered by the presence of nuisance parameters, is also examined and discussed. It is shown that the procedure yields strong model selection consistency. A Bernstein-von Mises-type theorem for sparse regression coefficients is also obtained for uncertainty quantification through credible sets with guaranteed frequentist coverage. Asymptotic properties of numerous examples are investigated using the theory developed in this study.
引用
收藏
页码:3040 / 3111
页数:72
相关论文
共 50 条
  • [11] Sparse Bayesian linear regression using generalized normal priors
    Zhang, Hai
    Wang, Puyu
    Dong, Qing
    Wang, Pu
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2017, 15 (03)
  • [12] Bayesian approach with extended support estimation for sparse linear regression
    Kim, Kyung-Su
    Chung, Sae Young
    [J]. RESULTS IN APPLIED MATHEMATICS, 2019, 2
  • [13] Sparse Bayesian Regression for Grouped Variables in Generalized Linear Models
    Raman, Sudhir
    Roth, Volker
    [J]. PATTERN RECOGNITION, PROCEEDINGS, 2009, 5748 : 242 - 251
  • [14] Estimating Sparse Gene Regulatory Networks Using a Bayesian Linear Regression
    Sarder, Pinaki
    Schierding, William
    Cobb, J. Perren
    Nehorai, Arye
    [J]. IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2010, 9 (02) : 121 - 131
  • [15] Sparse linear regression in unions of bases via Bayesian variable selection
    Fevotte, Cedric
    Godsill, Simon J.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (07) : 441 - 444
  • [16] Ordinal Regression with Sparse Bayesian
    Chang, Xiao
    Zheng, Qinghua
    Lin, Peng
    [J]. EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2009, 5755 : 591 - 599
  • [17] BAYESIAN INFERENCES ON NONLINEAR FUNCTIONS OF THE PARAMETERS IN LINEAR-REGRESSION
    VANDERMERWE, AJ
    VANDERMERWE, CA
    GROENEWALD, PCN
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1992, 44 (02) : 201 - 211
  • [18] Minimax and minimax-Bayesian estimation of linear regression parameters
    Solovev, VN
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 1996, 51 (03) : 563 - 564
  • [19] Inference of local regression in the presence of nuisance parameters
    Xu, Ke-Li
    [J]. JOURNAL OF ECONOMETRICS, 2020, 218 (02) : 532 - 560
  • [20] Bayesian Linear Regression With Cauchy Prior and Its Application in Sparse MIMO Radar
    Li, Jun
    Wu, Ryan
    Lu, I-Tai
    Ren, Dongyin
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (06) : 9576 - 9597