Unified Bayesian theory of sparse linear regression with nuisance parameters

被引:5
|
作者
Jeong, Seonghyun [1 ]
Ghosal, Subhashis [2 ]
机构
[1] Yonsei Univ, Dept Appl Stat, Dept Stat & Data Sci, Seoul 03722, South Korea
[2] North Carolina State Univ, Dept Stat, Raleigh, NC 27607 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2021年 / 15卷 / 01期
关键词
Bernstein-von Mises theorems; High-dimensional regression; Model selection consistency; Posterior contraction rates; Sparse priors; POSTERIOR CONCENTRATION; CONVERGENCE-RATES; SELECTION;
D O I
10.1214/21-EJS1855
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study frequentist asymptotic properties of Bayesian procedures for high-dimensional Gaussian sparse regression when unknown nuisance parameters are involved. Nuisance parameters can be finite-, high-, or infinite-dimensional. A mixture of point masses at zero and continuous distributions is used for the prior distribution on sparse regression coefficients, and appropriate prior distributions are used for nuisance parameters. The optimal posterior contraction of sparse regression coefficients, hampered by the presence of nuisance parameters, is also examined and discussed. It is shown that the procedure yields strong model selection consistency. A Bernstein-von Mises-type theorem for sparse regression coefficients is also obtained for uncertainty quantification through credible sets with guaranteed frequentist coverage. Asymptotic properties of numerous examples are investigated using the theory developed in this study.
引用
收藏
页码:3040 / 3111
页数:72
相关论文
共 50 条
  • [1] On a unified framework for linear nuisance parameters
    Yongchang Hu
    Geert Leus
    [J]. EURASIP Journal on Advances in Signal Processing, 2017
  • [2] On a unified framework for linear nuisance parameters
    Hu, Yongchang
    Leus, Geert
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2017,
  • [4] BAYESIAN LINEAR REGRESSION WITH SPARSE PRIORS
    Castillo, Ismael
    Schmidt-Hieber, Johannes
    Van der Vaart, Aad
    [J]. ANNALS OF STATISTICS, 2015, 43 (05): : 1986 - 2018
  • [5] Neuronized Priors for Bayesian Sparse Linear Regression
    Shin, Minsuk
    Liu, Jun S.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (540) : 1695 - 1710
  • [6] A UNIFIED VIEW OF DECENTRALIZED ALGORITHMS FOR SPARSE LINEAR REGRESSION
    Maros, Marie
    Scutari, Gesualdo
    [J]. 2023 IEEE 9TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, CAMSAP, 2023, : 471 - 475
  • [7] ON THE UNIFIED METHOD WITH NUISANCE PARAMETERS
    Sen, Bodhisattva
    Walker, Matthew
    Woodroofe, Michael
    [J]. STATISTICA SINICA, 2009, 19 (01) : 301 - 314
  • [8] Sparse Bayesian linear regression with latent masking variables
    Kondo, Yohei
    Hayashi, Kohei
    Maeda, Shin-ichi
    [J]. NEUROCOMPUTING, 2017, 258 : 3 - 12
  • [9] Bayesian Functional Linear Regression with Sparse Step Functions
    Grollemund, Paul-Marie
    Abraham, Christophe
    Baragatti, Meili
    Pudlo, Pierre
    [J]. BAYESIAN ANALYSIS, 2019, 14 (01): : 111 - 135
  • [10] Bayesian sparse linear regression with unknown symmetric error
    Chae, Minwoo
    Lin, Lizhen
    Dunson, David B.
    [J]. INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (03) : 621 - 653