CONVEXITY OF INTEGRAL OPERATORS GENERATED BY SOME NEW INEQUALITIES OF HYPER-BESSEL FUNCTIONS

被引:1
|
作者
Din, Muhey U. [1 ]
机构
[1] Govt Postgrad Islamia Coll Faisalabad, Dept Math, Faisalabad, Pakistan
来源
关键词
analytic functions; convex functions; integral operators; Bessel functions; hyper-Bessel functions;
D O I
10.4134/CKMS.c180396
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we deduced some new inequalities related to hyper-Bessel function. By using these inequalities we will find some sufficient conditions under which certain families of integral operators are convex in the open unit disc. Some applications related to these results are also the part of our investigation.
引用
收藏
页码:1163 / 1173
页数:11
相关论文
共 50 条
  • [1] ON SOME PROPERTIES OF HYPER-BESSEL AND RELATED FUNCTIONS
    Aktas, I
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (01): : 30 - 37
  • [2] HARMONIC STARLIKENESS AND CONVEXITY OF INTEGRAL OPERATORS GENERATED BY GENERALIZED BESSEL FUNCTIONS
    Porwal S.
    [J]. Acta Mathematica Vietnamica, 2014, 39 (3) : 337 - 346
  • [3] Convexity of integral operators involving generalized Bessel functions
    Deniz, Erhan
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (03) : 201 - 216
  • [4] Geometric and monotonic properties of hyper-Bessel functions
    Aktas, Ibrahim
    Baricz, Arpad
    Singh, Sanjeev
    [J]. RAMANUJAN JOURNAL, 2020, 51 (02): : 275 - 295
  • [5] On Geometric Properties of Normalized Hyper-Bessel Functions
    Ahmad, Khurshid
    Mustafa, Saima
    Din, Muhey U.
    Rehman, Shafiq Ur
    Raza, Mohsan
    Arif, Muhammad
    [J]. MATHEMATICS, 2019, 7 (04)
  • [6] Geometric and monotonic properties of hyper-Bessel functions
    İbrahim Aktaş
    Árpád Baricz
    Sanjeev Singh
    [J]. The Ramanujan Journal, 2020, 51 : 275 - 295
  • [7] Convexity of functions defined by differential inequalities and integral operators
    Supramaniam, Shamani
    Chandrashekar, R.
    Lee, See Keong
    Subramanian, K. G.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (01) : 147 - 157
  • [8] Convexity of functions defined by differential inequalities and integral operators
    Shamani Supramaniam
    R. Chandrashekar
    See Keong Lee
    K. G. Subramanian
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 147 - 157
  • [9] A family of hyper-Bessel functions and convergent series in them
    Jordanka Paneva-Konovska
    [J]. Fractional Calculus and Applied Analysis, 2014, 17 : 1001 - 1015
  • [10] From the hyper-Bessel operators of Dimovski to the generalized fractional calculus
    Kiryakova, Virginia
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (04) : 977 - 1000