Battery state-of-charge estimation amid dynamic usage with physics-informed deep learning

被引:123
|
作者
Tian, Jinpeng [1 ]
Xiong, Rui [1 ]
Lu, Jiahuan [1 ]
Chen, Cheng [1 ]
Shen, Weixiang [2 ]
机构
[1] Beijing Inst Technol, Sch Mech Engn, Dept Vehicle Engn, 5 South Zhongguancun St, Beijing 100081, Peoples R China
[2] Swinburne Univ Technol, Sch Sci Comp & Engn Technol, Hawthorn, Vic 3122, Australia
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; State of charge; Deep learning; Artificial intelligence; EQUIVALENT-CIRCUIT MODELS; LITHIUM-ION BATTERIES; NEURAL-NETWORK; ONLINE STATE; IDENTIFICATION;
D O I
10.1016/j.ensm.2022.06.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Accurate estimation of state of charge (SOC) constitutes the basis to enable the reliable operations of lithium-ion batteries. The recent development in deep learning provides an emerging solution to SOC estimation. However, the limited training and testing profiles and the ignorance of battery working principles jeopardise the performance of deep learning-based methods. In this study, we propose to incorporate two kinds of domain knowledge into the deep learning-based methods. First, voltage and current sequences are decoupled into open circuit voltage (OCV), ohmic response and polarisation voltage to augment the input of deep neural networks (DNNs). Second, as conventional DNNs ignore the time-dependency in SOC estimation results, we propose a combination framework to adaptively fuse the SOC estimation results from the DNN and short-term Ampere-hour predictions. The proposed method is validated on a large dataset which is collected by conducting the tests on eight batteries at various real-world driving profiles and is compared with a basic long short-term memory DNN based on the input of only voltage and current. The results show that the proposed method can sharply reduce the SOC estimation root mean square error and maximum absolute error by 30.89% and 64.88%, respectively, with only slightly increased computational cost. Further validations under different temperatures and the applications of the proposed method to other DNNs also demonstrate its effectiveness. These results highlight the potential to boost the performance of DNNs by making effective use of battery domain knowledge.
引用
收藏
页码:718 / 729
页数:12
相关论文
共 50 条
  • [31] Physics-informed deep learning for traffic state estimation based on the traffic flow model and computational graph method
    Zhang, Jinlei
    Mao, Shuai
    Yang, Lixing
    Ma, Wei
    Li, Shukai
    Gao, Ziyou
    INFORMATION FUSION, 2024, 101
  • [32] Physics-Informed Deep Learning for Tool Wear Monitoring
    Zhu, Kunpeng
    Guo, Hao
    Li, Si
    Lin, Xin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (01) : 524 - 533
  • [33] Physics-informed deep learning cascade loss model
    Feng, Yunyang
    Song, Xizhen
    Yuan, Wei
    Lu, Hanan
    AEROSPACE SCIENCE AND TECHNOLOGY, 2023, 134
  • [34] Physics-informed deep learning for fringe pattern analysis
    Wei Yin
    Yuxuan Che
    Xinsheng Li
    Mingyu Li
    Yan Hu
    Shijie Feng
    Edmund Y.Lam
    Qian Chen
    Chao Zuo
    Opto-ElectronicAdvances, 2024, 7 (01) : 7 - 19
  • [35] Emergent physics-informed design of deep learning for microscopy
    Wijesinghe, Philip
    Dholakia, Kishan
    JOURNAL OF PHYSICS-PHOTONICS, 2021, 3 (02):
  • [36] State of health estimation of lithium-ion battery cell based on optical thermometry with physics-informed machine learning
    Jang, Jeongwoo
    Jo, Junhyoung
    Kim, Jinsu
    Lee, Seungmin
    Lee, Tonghun
    Yoo, Jihyung
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 140
  • [37] Physics-informed deep learning for incompressible laminar flows
    Chengping Rao
    Hao Sun
    Yang Liu
    Theoretical & Applied Mechanics Letters, 2020, (03) : 207 - 212
  • [38] Physics-informed deep learning for incompressible laminar flows
    Rao, Chengping
    Sun, Hao
    Liu, Yang
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2020, 10 (03) : 207 - 212
  • [39] Physics-informed deep learning for fringe pattern analysis
    Yin, Wei
    Che, Yuxuan
    Li, Xinsheng
    Li, Mingyu
    Hu, Yan
    Feng, Shijie
    Lam, Edmund Y.
    Chen, Qian
    Zuo, Chao
    OPTO-ELECTRONIC ADVANCES, 2024, 7 (01)
  • [40] A Case Study of a Tiny Machine Learning Application for Battery State-of-Charge Estimation
    Giazitzis, Spyridon
    Sakwa, Maciej
    Leva, Sonia
    Ogliari, Emanuele
    Badha, Susheel
    Rosetti, Filippo
    ELECTRONICS, 2024, 13 (10)