Physics-informed deep learning for fringe pattern analysis

被引:26
|
作者
Yin, Wei [1 ,2 ,3 ]
Che, Yuxuan [1 ,2 ,3 ]
Li, Xinsheng [1 ,2 ,3 ]
Li, Mingyu [1 ,2 ,3 ]
Hu, Yan [1 ,2 ,3 ]
Feng, Shijie [1 ,2 ,3 ]
Lam, Edmund Y. [4 ]
Chen, Qian [3 ]
Zuo, Chao [1 ,2 ,3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Smart Computat Imaging Lab SCILab, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, Smart Computat Imaging Res Inst SCIRI, Nanjing 210019, Peoples R China
[3] Jiangsu Key Lab Spectral Imaging & Intelligent Sen, Nanjing 210094, Peoples R China
[4] Univ Hong Kong, Dept Elect Engn, Pokfulam, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
optical metrology; deep learning; physics-informed neural networks; fringe analysis; phase retrieval; FOURIER-TRANSFORM PROFILOMETRY;
D O I
10.29026/oea.2024.230034
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recently, deep learning has yielded transformative success across optics and photonics, especially in optical metrology. Deep neural networks (DNNs) with a fully convolutional architecture (e.g., U-Net and its derivatives) have been widely implemented in an end-to-end manner to accomplish various optical metrology tasks, such as fringe denoising, phase unwrapping, and fringe analysis. However, the task of training a DNN to accurately identify an image-to-image transform from massive input and output data pairs seems at best naive, as the physical laws governing the image formation or other domain expertise pertaining to the measurement have not yet been fully exploited in current deep learning practice. To this end, we introduce a physics-informed deep learning method for fringe pattern analysis (PI-FPA) to overcome this limit by integrating a lightweight DNN with a learning-enhanced Fourier transform profilometry (LeFTP) module. By parameterizing conventional phase retrieval methods, the LeFTP module embeds the prior knowledge in the network structure and the loss function to directly provide reliable phase results for new types of samples, while circumventing the requirement of collecting a large amount of high-quality data in supervised learning methods. Guided by the initial phase from LeFTP, the phase recovery ability of the lightweight DNN is enhanced to further improve the phase accuracy at a low computational cost compared with existing end-to-end networks. Experimental results demonstrate that PI-FPA enables more accurate and computationally efficient single-shot phase retrieval, exhibiting its excellent generalization to various unseen objects during training. The proposed PI-FPA presents that challenging issues in optical metrology can be potentially overcome through the synergy of physics-priors-based traditional tools and data-driven learning approaches, opening new avenues to achieve fast and accurate single-shot 3D imaging.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Physics-informed deep learning for fringe pattern analysis
    Wei Yin
    Yuxuan Che
    Xinsheng Li
    Mingyu Li
    Yan Hu
    Shijie Feng
    Edmund Y.Lam
    Qian Chen
    Chao Zuo
    Opto-ElectronicAdvances, 2024, 7 (01) : 7 - 19
  • [2] Physics-informed deep learning for digital materials
    Zhang, Zhizhou
    Gu, Grace X.
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2021, 11 (01)
  • [3] Physics-informed deep learning for digital materials
    Zhizhou Zhang
    Grace X Gu
    Theoretical & Applied Mechanics Letters, 2021, 11 (01) : 52 - 57
  • [4] Physics-Informed Deep Learning for Tool Wear Monitoring
    Zhu, Kunpeng
    Guo, Hao
    Li, Si
    Lin, Xin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (01) : 524 - 533
  • [5] Physics-informed deep learning cascade loss model
    Feng, Yunyang
    Song, Xizhen
    Yuan, Wei
    Lu, Hanan
    AEROSPACE SCIENCE AND TECHNOLOGY, 2023, 134
  • [6] Emergent physics-informed design of deep learning for microscopy
    Wijesinghe, Philip
    Dholakia, Kishan
    JOURNAL OF PHYSICS-PHOTONICS, 2021, 3 (02):
  • [7] Physics-informed deep learning for incompressible laminar flows
    Chengping Rao
    Hao Sun
    Yang Liu
    Theoretical & Applied Mechanics Letters, 2020, (03) : 207 - 212
  • [8] Physics-informed deep learning for incompressible laminar flows
    Rao, Chengping
    Sun, Hao
    Liu, Yang
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2020, 10 (03) : 207 - 212
  • [9] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    ACTA NUMERICA, 2024, 33 : 633 - 713
  • [10] Physics-informed deep learning for rock physical inversion and its uncertainty analysis
    Feng, Runhai
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 230