Physics-informed deep learning for fringe pattern analysis

被引:26
|
作者
Yin, Wei [1 ,2 ,3 ]
Che, Yuxuan [1 ,2 ,3 ]
Li, Xinsheng [1 ,2 ,3 ]
Li, Mingyu [1 ,2 ,3 ]
Hu, Yan [1 ,2 ,3 ]
Feng, Shijie [1 ,2 ,3 ]
Lam, Edmund Y. [4 ]
Chen, Qian [3 ]
Zuo, Chao [1 ,2 ,3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Smart Computat Imaging Lab SCILab, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, Smart Computat Imaging Res Inst SCIRI, Nanjing 210019, Peoples R China
[3] Jiangsu Key Lab Spectral Imaging & Intelligent Sen, Nanjing 210094, Peoples R China
[4] Univ Hong Kong, Dept Elect Engn, Pokfulam, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
optical metrology; deep learning; physics-informed neural networks; fringe analysis; phase retrieval; FOURIER-TRANSFORM PROFILOMETRY;
D O I
10.29026/oea.2024.230034
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recently, deep learning has yielded transformative success across optics and photonics, especially in optical metrology. Deep neural networks (DNNs) with a fully convolutional architecture (e.g., U-Net and its derivatives) have been widely implemented in an end-to-end manner to accomplish various optical metrology tasks, such as fringe denoising, phase unwrapping, and fringe analysis. However, the task of training a DNN to accurately identify an image-to-image transform from massive input and output data pairs seems at best naive, as the physical laws governing the image formation or other domain expertise pertaining to the measurement have not yet been fully exploited in current deep learning practice. To this end, we introduce a physics-informed deep learning method for fringe pattern analysis (PI-FPA) to overcome this limit by integrating a lightweight DNN with a learning-enhanced Fourier transform profilometry (LeFTP) module. By parameterizing conventional phase retrieval methods, the LeFTP module embeds the prior knowledge in the network structure and the loss function to directly provide reliable phase results for new types of samples, while circumventing the requirement of collecting a large amount of high-quality data in supervised learning methods. Guided by the initial phase from LeFTP, the phase recovery ability of the lightweight DNN is enhanced to further improve the phase accuracy at a low computational cost compared with existing end-to-end networks. Experimental results demonstrate that PI-FPA enables more accurate and computationally efficient single-shot phase retrieval, exhibiting its excellent generalization to various unseen objects during training. The proposed PI-FPA presents that challenging issues in optical metrology can be potentially overcome through the synergy of physics-priors-based traditional tools and data-driven learning approaches, opening new avenues to achieve fast and accurate single-shot 3D imaging.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Physics-Informed Deep Learning Inversion with Application to Noisy Magnetotelluric Measurements
    Liu, Wei
    Wang, He
    Xi, Zhenzhu
    Wang, Liang
    REMOTE SENSING, 2024, 16 (01)
  • [32] Unsupervised physics-informed deep learning for assessing pulmonary artery hemodynamics
    Liu, Xiujian
    Xie, Baihong
    Zhang, Dong
    Zhang, Heye
    Gao, Zhifan
    de Albuquerque, Victor Hugo C.
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 257
  • [33] Physics-informed deep learning model in wind turbine response prediction
    Li, Xuan
    Zhang, Wei
    RENEWABLE ENERGY, 2022, 185 : 932 - 944
  • [34] Phase Retrieval for Fourier THz Imaging with Physics-Informed Deep Learning
    Xiang, Mingjun
    Wang, Lingxiao
    Yuan, Hui
    Zhou, Kai
    Roskos, Hartmut G.
    2022 47TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ 2022), 2022,
  • [35] Physics-informed deep learning for melting heat transfer analysis with model-based transfer learning
    Guo, Hongwei
    Zhuang, Xiaoying
    Alajlan, Naif
    Rabczuk, Timon
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 143 : 303 - 317
  • [36] Physics-informed deep-learning applications to experimental fluid mechanics
    Eivazi, Hamidreza
    Wang, Yuning
    Vinuesa, Ricardo
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (07)
  • [37] A PHYSICS-INFORMED DEEP LEARNING APPROACH FOR HDGT COMPRESSOR PERFORMANCE SIMULATION
    Wei, Manman
    Jiang, Xiaomo
    Liu, Yiyang
    Ge, Xin
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 12D, 2024,
  • [38] Physics-Informed deep learning to predict flow fields in cyclone separators
    Queiroz, L. H.
    Santos, F. P.
    Oliveira, J. P.
    Souza, M. B.
    DIGITAL CHEMICAL ENGINEERING, 2021, 1
  • [39] Multi-Objective Loss Balancing for Physics-Informed Deep Learning
    Bischof, Rafael
    Kraus, Michael A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 439
  • [40] Phase-field modeling of fracture with physics-informed deep learning
    Manav, M.
    Molinaro, R.
    Mishra, S.
    De Lorenzis, L.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 429