Dolbeault cohomology for G2-manifolds

被引:23
|
作者
Fernandez, M [1 ]
Ugarte, L [1 ]
机构
[1] Univ Basque Country, Fac Ciencias, Dept Matemat, Bilbao 48080, Spain
关键词
G(2)-manifolds; vector cross-products; calibrated and cocalibrated G(2)-manifolds; G(2)-cohomology; compact G(2)-nilmanifolds;
D O I
10.1023/A:1004940807017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cocalibrated G(2)-manifolds are seven-dimensional Riemannian manifolds with a distinguished 3-form which is coclosed. For such a manifold M, S. Salamon in Riemannian Geometry and Holonomy Groups (Longman, 1989) defined a differential complex (A(q)(M),D-q(V)) related with the G(2)-structure of M. In this paper we study the cohomology H*(V)(M) of this complex; it is treated as an analogue of a Dolbeault cohomology of complex manifolds. For compact G(2)-manifolds whose holonomy group is a subgroup of G(2) special properties are proved. The cohomology H*(V)(Gamma/K) of any cocalibrated G(2)-nilmanifold Gamma\K is also studied.
引用
收藏
页码:57 / 86
页数:30
相关论文
共 50 条
  • [21] Coulomb and Higgs phases of G2-manifolds
    Acharya, B. S.
    Baldwin, D. A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (01)
  • [22] Deformations of asymptotically cylindrical G2-manifolds
    Nordstroem, Johannes
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 145 : 311 - 348
  • [23] Locally conformal calibrated G2-manifolds
    Fernandez, Marisa
    Fino, Anna
    Raffero, Alberto
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (05) : 1721 - 1736
  • [24] Iterated collapsing phenomenon on G2-manifolds
    Li, Yang
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (03) : 971 - 1036
  • [25] Coulomb and Higgs phases of G2-manifolds
    B. S. Acharya
    D. A. Baldwin
    Journal of High Energy Physics, 2024
  • [26] G2-manifolds and coassociative torus fibration
    Fang, Fuquan
    Zhang, Yuguang
    FRONTIERS OF MATHEMATICS IN CHINA, 2008, 3 (01) : 49 - 77
  • [27] Rigidity and vanishing of basic Dolbeault cohomology of Sasakian manifolds
    Goertsches, Oliver
    Nozawa, Hiraku
    Toben, Dirk
    JOURNAL OF SYMPLECTIC GEOMETRY, 2016, 14 (01) : 31 - 70
  • [28] Dolbeault cohomology of G/(P,P)
    Chuah, MK
    Teo, LP
    MATHEMATISCHE ZEITSCHRIFT, 1999, 230 (03) : 595 - 602
  • [29] Locally residual currents and Dolbeault cohomology on projective manifolds
    Fabre, Bruno
    BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (06): : 553 - 564
  • [30] GENERALIZED G2-MANIFOLDS AND SU(3)-STRUCTURES
    Fino, Anna
    Tomassini, Adriano
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2008, 19 (10) : 1147 - 1165