Locally conformal calibrated G2-manifolds

被引:0
|
作者
Fernandez, Marisa [1 ]
Fino, Anna [2 ]
Raffero, Alberto [2 ]
机构
[1] Univ Basque Country, Fac Ciencias & Tecnol, Dept Matemat, Apartado 644, E-48080 Bilbao, Spain
[2] Univ Turin, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
关键词
Locally conformal calibrated G(2)-structure; SU(3)-structure; Mapping torus; HALF-FLAT STRUCTURES; METRICS; COMPLEX;
D O I
10.1007/s10231-015-0544-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study conditions for which the mapping torus of a 6-manifold endowed with an SU(3)-structure is a locally conformal calibrated G(2)-manifold, that is, a 7-manifold endowed with a G(2)-structure phi such that d(phi) = -theta Lambda phi for a closed nonvanishing 1-form theta. Moreover, we showthat if (M, phi) is a compact locally conformal calibratedG(2)-manifold with L-theta#phi = 0, where theta(#) is the dual of theta with respect to the Riemannian metric g(phi) induced by phi, then M is a fiber bundle over S-1 with a coupled SU(3)-manifold as fiber.
引用
收藏
页码:1721 / 1736
页数:16
相关论文
共 50 条
  • [1] A differential complex for locally conformal calibrated G2-manifolds
    Fernández, M
    Ugarte, L
    ILLINOIS JOURNAL OF MATHEMATICS, 2000, 44 (02) : 363 - 390
  • [2] CALIBRATED SUBMANIFOLDS AND REDUCTIONS OF G2-MANIFOLDS
    Kawai, Kotaro
    OSAKA JOURNAL OF MATHEMATICS, 2015, 52 (01) : 93 - 116
  • [3] Exotic G2-manifolds
    Crowley, Diarmuid
    Nordstrom, Johannes
    MATHEMATISCHE ANNALEN, 2021, 381 (1-2) : 29 - 74
  • [4] Generalised G2-manifolds
    Witt, F
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 265 (02) : 275 - 303
  • [5] Einstein locally conformal calibrated G2-structures
    Fino, Anna
    Raffero, Alberto
    MATHEMATISCHE ZEITSCHRIFT, 2015, 280 (3-4) : 1093 - 1106
  • [6] Dolbeault Cohomology for G2-Manifolds
    Marisa Fernández
    Luis Ugarte
    Geometriae Dedicata, 1998, 70 : 57 - 86
  • [7] Dolbeault cohomology for G2-manifolds
    Fernandez, M
    Ugarte, L
    GEOMETRIAE DEDICATA, 1998, 70 (01) : 57 - 86
  • [8] On geometry of the (generalized) G2-manifolds
    Hu, Sen
    Hu, Zhi
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (20):
  • [9] Curvature decomposition of G2-manifolds
    Cleyton, Richard
    Ivanov, Stefan
    JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (10) : 1429 - 1449
  • [10] Toric geometry of G2-manifolds
    Madsen, Thomas Bruun
    Swann, Andrew
    GEOMETRY & TOPOLOGY, 2019, 23 (07) : 3459 - 3500