Locally conformal calibrated G2-manifolds

被引:0
|
作者
Fernandez, Marisa [1 ]
Fino, Anna [2 ]
Raffero, Alberto [2 ]
机构
[1] Univ Basque Country, Fac Ciencias & Tecnol, Dept Matemat, Apartado 644, E-48080 Bilbao, Spain
[2] Univ Turin, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
关键词
Locally conformal calibrated G(2)-structure; SU(3)-structure; Mapping torus; HALF-FLAT STRUCTURES; METRICS; COMPLEX;
D O I
10.1007/s10231-015-0544-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study conditions for which the mapping torus of a 6-manifold endowed with an SU(3)-structure is a locally conformal calibrated G(2)-manifold, that is, a 7-manifold endowed with a G(2)-structure phi such that d(phi) = -theta Lambda phi for a closed nonvanishing 1-form theta. Moreover, we showthat if (M, phi) is a compact locally conformal calibratedG(2)-manifold with L-theta#phi = 0, where theta(#) is the dual of theta with respect to the Riemannian metric g(phi) induced by phi, then M is a fiber bundle over S-1 with a coupled SU(3)-manifold as fiber.
引用
收藏
页码:1721 / 1736
页数:16
相关论文
共 50 条
  • [21] G2-manifolds and coassociative torus fibration
    Fang, Fuquan
    Zhang, Yuguang
    FRONTIERS OF MATHEMATICS IN CHINA, 2008, 3 (01) : 49 - 77
  • [22] Locally conformal parallel G2 and Spin(7) manifolds
    Ivanov, Stefan
    Parton, Maurizio
    Piccinni, Paolo
    MATHEMATICAL RESEARCH LETTERS, 2006, 13 (2-3) : 167 - 177
  • [23] GENERALIZED G2-MANIFOLDS AND SU(3)-STRUCTURES
    Fino, Anna
    Tomassini, Adriano
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2008, 19 (10) : 1147 - 1165
  • [24] Spinorial description of SU(3)- and G2-manifolds
    Agricola, Ilka
    Chiossi, Simon G.
    Friedrich, Thomas
    Hoell, Jos
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 : 535 - 555
  • [25] U(1)-Gauge Theories on G2-Manifolds
    Hu, Zhi
    Zong, Runhong
    ANNALES HENRI POINCARE, 2024, 25 (05): : 2453 - 2487
  • [26] Manifolds with parallel differential forms and Kahler identities for G2-manifolds
    Verbitsky, Misha
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (06) : 1001 - 1016
  • [27] EXISTENCE OF COMPATIBLE CONTACT STRUCTURES ON G2-MANIFOLDS
    Arikan, M. Firat
    Cho, Hyunjoo
    Salur, Sema
    ASIAN JOURNAL OF MATHEMATICS, 2013, 17 (02) : 321 - 333
  • [28] Compact weak G2-manifolds with conical singularities
    Bilal, A
    Metzger, S
    NUCLEAR PHYSICS B, 2003, 663 (1-2) : 343 - 364
  • [29] Monopoles on the Bryant-Salamon G2-manifolds
    Oliveira, Goncalo
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 86 : 599 - 632
  • [30] Anomalies in M-theory on singular G2-manifolds
    Bilal, A
    Metzger, S
    NUCLEAR PHYSICS B, 2003, 672 (1-2) : 239 - 263