Interval data clustering with applications

被引:0
|
作者
Peng, Wei [1 ]
Li, Tao [1 ]
机构
[1] Florida Int Univ, Sch Comp Sci, Miami, FL 33199 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Interval data is described by a group of variables, each of which contains a range of continuous values instead of the traditional single continuous or discrete value. Traditional data analysis simply replaces each interval by its representative (e. g., center or mean) and ignores the structure information of intervals. In this paper, we study the problem of clustering interval data using the modified or extended interval data dissimilarity measures. Our contributions are two fold. First, we discuss various approaches for measuring the dissimilarities/distances between interval data, investigate the relations among them, and present a comprehensive-experimental study on clustering interval data. We show that the extended interval data clustering achieves better performance than traditional ones and produces more meaningful and explanatory results. Second, we propose a two-stage approach for clustering interval data by exploiting the relations between the traditional distances and the modified. distances. Experimental results show the effectiveness of our approach.
引用
收藏
页码:355 / +
页数:3
相关论文
共 50 条
  • [21] Clustering reduced interval data using Hausdorff distance
    Irpino, Antonio
    Tontodonato, Valentino
    [J]. COMPUTATIONAL STATISTICS, 2006, 21 (02) : 271 - 288
  • [22] Possibilistic Clustering Methods for Interval-Valued Data
    Pimentel, Bruno Almeida
    De Souza, Renata M. C. R.
    [J]. INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2014, 22 (02) : 263 - 291
  • [23] An automatic clustering for interval data using the genetic algorithm
    Tai Vovan
    Dinh Phamtoan
    Le Hoang Tuan
    Thao Nguyentrang
    [J]. Annals of Operations Research, 2021, 303 : 359 - 380
  • [24] A study of divisive clustering with Hausdorff distances for interval data
    Chen, Yi
    Billard, L.
    [J]. PATTERN RECOGNITION, 2019, 96
  • [25] Fuzzy clustering of spatial interval-valued data
    D'Urso, Pierpaolo
    De Giovanni, Livia
    Federico, Lorenzo
    Vitale, Vincenzina
    [J]. SPATIAL STATISTICS, 2023, 57
  • [26] An automatic clustering for interval data using the genetic algorithm
    Vovan, Tai
    Phamtoan, Dinh
    Tuan, Le Hoang
    Nguyentrang, Thao
    [J]. ANNALS OF OPERATIONS RESEARCH, 2021, 303 (1-2) : 359 - 380
  • [27] Kernel-Based Fuzzy Clustering of Interval Data
    Pimentel, Bruno A.
    da Costa, Anderson F. B. F.
    de Souza, Renata M. C. R.
    [J]. IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 497 - 501
  • [28] Trimmed fuzzy clustering for interval-valued data
    D'Urso, Pierpaolo
    De Giovanni, Livia
    Massari, Riccardo
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2015, 9 (01) : 21 - 40
  • [29] An Improved Fuzzy Clustering Method for Interval Uncertain Data
    Xiao, Mansheng
    Zhang, Longxin
    Zhang, Xiaoli
    Hu, Yongxiang
    [J]. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2020, 42 (08): : 1968 - 1974
  • [30] Clustering reduced interval data using Hausdorff distance
    Antonio Irpino
    Valentino Tontodonato
    [J]. Computational Statistics, 2006, 21 : 271 - 288