Interval data clustering with applications

被引:0
|
作者
Peng, Wei [1 ]
Li, Tao [1 ]
机构
[1] Florida Int Univ, Sch Comp Sci, Miami, FL 33199 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Interval data is described by a group of variables, each of which contains a range of continuous values instead of the traditional single continuous or discrete value. Traditional data analysis simply replaces each interval by its representative (e. g., center or mean) and ignores the structure information of intervals. In this paper, we study the problem of clustering interval data using the modified or extended interval data dissimilarity measures. Our contributions are two fold. First, we discuss various approaches for measuring the dissimilarities/distances between interval data, investigate the relations among them, and present a comprehensive-experimental study on clustering interval data. We show that the extended interval data clustering achieves better performance than traditional ones and produces more meaningful and explanatory results. Second, we propose a two-stage approach for clustering interval data by exploiting the relations between the traditional distances and the modified. distances. Experimental results show the effectiveness of our approach.
引用
收藏
页码:355 / +
页数:3
相关论文
共 50 条
  • [1] Probabilistic clustering of interval data
    Brito, Paula
    Pedro Duarte Silva, A.
    Dias, Jose G.
    [J]. INTELLIGENT DATA ANALYSIS, 2015, 19 (02) : 293 - 313
  • [2] Possibilistic Approach to Clustering of Interval Data
    Pimentel, Bruno Almeida
    de Souza, Renata M. C. R.
    [J]. PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 190 - 195
  • [3] New clustering methods for interval data
    Marie Chavent
    Francisco de A. T. de Carvalho
    Yves Lechevallier
    Rosanna Verde
    [J]. Computational Statistics, 2006, 21 : 211 - 229
  • [4] A Robust Clustering Algorithm for Interval Data
    Yang, Miin-Shen
    Kuo, Hsien-Chun
    Hung, Wen-Liang
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [5] New clustering methods for interval data
    Chavent, Marie
    de Carvalho, Francisco de A. T.
    Lechevallier, Yves
    Verde, Rosanna
    [J]. COMPUTATIONAL STATISTICS, 2006, 21 (02) : 211 - 229
  • [6] A DATA STREAMS CLUSTERING ALGORITHM BASED ON INTERVAL DATA
    Li, Yan
    Ye, Ming
    Wang, Huiwen
    Liu, Dan
    Che, Yin
    [J]. PROCEEDINGS OF THE 38TH INTERNATIONAL CONFERENCE ON COMPUTERS AND INDUSTRIAL ENGINEERING, VOLS 1-3, 2008, : 2775 - 2778
  • [7] Fuzzy Kohonen clustering networks for interval data
    de Almeida, Carlos W. D.
    de Souza, Renata M. C. R.
    Candelas, Ana L. B.
    [J]. NEUROCOMPUTING, 2013, 99 : 65 - 75
  • [8] Symbolic Clustering with Interval-Valued Data
    Sato-Ilic, Mika
    [J]. COMPLEX ADAPTIVE SYSTEMS, 2011, 6
  • [9] A new topological clustering algorithm for interval data
    Cabanes, Guenael
    Bennani, Younes
    Destenay, Renaud
    Hardy, Andre
    [J]. PATTERN RECOGNITION, 2013, 46 (11) : 3030 - 3039
  • [10] An Improved FCM Clustering Method for Interval Data
    Gu, Shen-Ming
    Zhao, Jian-Wen
    He, Ling
    [J]. ROUGH SET AND KNOWLEDGE TECHNOLOGY (RSKT), 2010, 6401 : 545 - 550