A new topological clustering algorithm for interval data

被引:25
|
作者
Cabanes, Guenael [1 ]
Bennani, Younes [1 ]
Destenay, Renaud [2 ,3 ]
Hardy, Andre [2 ,3 ]
机构
[1] Univ Paris 13, CNRS, UMR 7030, LIPN, F-93430 Villetaneuse, France
[2] Univ Namur FUNDP, Namur Ctr Complex Syst naXys, B-5000 Namur, Belgium
[3] Univ Namur FUNDP, Dept Math, B-5000 Namur, Belgium
关键词
Interval data; Clustering; Self-organizing map;
D O I
10.1016/j.patcog.2013.03.023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering is a very powerful tool for automatic detection of relevant sub-groups in unlabeled data sets. In this paper we focus on interval data: i.e., where the objects are defined as hyper-rectangles. We propose here a new clustering algorithm for interval data, based on the learning of a Self-Organizing Map. The major advantage of our approach is that the number of clusters to find is determined automatically; no a priori hypothesis for the number of clusters is required. Experimental results confirm the effectiveness of the proposed algorithm when applied to interval data. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3030 / 3039
页数:10
相关论文
共 50 条
  • [1] A Robust Clustering Algorithm for Interval Data
    Yang, Miin-Shen
    Kuo, Hsien-Chun
    Hung, Wen-Liang
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [2] A New Fuzzy c-Means Clustering Algorithm for Interval Data
    Jin, Yan
    Ma, Jianghong
    [J]. 2013 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (ICCSAI 2013), 2013, : 156 - 159
  • [3] A DATA STREAMS CLUSTERING ALGORITHM BASED ON INTERVAL DATA
    Li, Yan
    Ye, Ming
    Wang, Huiwen
    Liu, Dan
    Che, Yin
    [J]. PROCEEDINGS OF THE 38TH INTERNATIONAL CONFERENCE ON COMPUTERS AND INDUSTRIAL ENGINEERING, VOLS 1-3, 2008, : 2775 - 2778
  • [4] New clustering methods for interval data
    Marie Chavent
    Francisco de A. T. de Carvalho
    Yves Lechevallier
    Rosanna Verde
    [J]. Computational Statistics, 2006, 21 : 211 - 229
  • [5] New clustering methods for interval data
    Chavent, Marie
    de Carvalho, Francisco de A. T.
    Lechevallier, Yves
    Verde, Rosanna
    [J]. COMPUTATIONAL STATISTICS, 2006, 21 (02) : 211 - 229
  • [6] An automatic clustering for interval data using the genetic algorithm
    Tai Vovan
    Dinh Phamtoan
    Le Hoang Tuan
    Thao Nguyentrang
    [J]. Annals of Operations Research, 2021, 303 : 359 - 380
  • [7] An automatic clustering for interval data using the genetic algorithm
    Vovan, Tai
    Phamtoan, Dinh
    Tuan, Le Hoang
    Nguyentrang, Thao
    [J]. ANNALS OF OPERATIONS RESEARCH, 2021, 303 (1-2) : 359 - 380
  • [8] A clustering algorithm for interval graph test on noisy data
    Lu, WF
    Hsu, WL
    [J]. EXPERIMENTAL AND EFFICIENT ALGORITHMS, PROCEEDINGS, 2003, 2647 : 195 - 208
  • [9] An efficient robust automatic clustering algorithm for interval data
    Vo-Van Tai
    Ngoc, Lethikim
    Nguyen-Trang Thao
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (10) : 4621 - 4635
  • [10] A New Dynamic Clustering Algorithm for an Interval Grey Number
    Wu, Shunxiang
    Yang, Junjie
    Wei, Wenchang
    Lin, Lihua
    Luo, Zhifeng
    [J]. ADVANCES IN GREY SYSTEMS RESEARCH, 2010, : 47 - 58