Determine a Space-Dependent Source Term in a Time Fractional Diffusion-Wave Equation

被引:26
|
作者
Yon, X. B. [1 ]
Wei, T. [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730030, Peoples R China
关键词
Inverse spatial source problem; Uniqueness; Non-stationary iterative Tikhonov regularization; INVERSE SOURCE PROBLEM; IDENTIFICATION; PARAMETER; IDENTIFY; ORDER;
D O I
10.1007/s10440-019-00248-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to identify a space-dependent source term in a multi-dimensional time fractional diffusion-wave equation from a part of noisy boundary data. Based on the series expression of solution for the direct problem, we improve the regularity of the weak solution for the direct problem under strong conditions. And we obtain the uniqueness of inverse space-dependent source term problem by the Titchmarsh convolution theorem and the Duhamel principle. Further, we use a non-stationary iterative Tikhonov regularization method combined with a finite dimensional approximation to find a stable source term. Numerical examples are provided to show the effectiveness of the proposed method.
引用
收藏
页码:163 / 181
页数:19
相关论文
共 50 条
  • [41] Backward problems in time for fractional diffusion-wave equation
    Floridia, G.
    Yamamoto, M.
    [J]. INVERSE PROBLEMS, 2020, 36 (12)
  • [42] A wavelet approach for the multi-term time fractional diffusion-wave equation
    Sarvestani, F. Soltani
    Heydari, M. H.
    Niknam, A.
    Avazzadeh, Z.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (03) : 640 - 661
  • [43] Wavelets method for the time fractional diffusion-wave equation
    Heydari, M. H.
    Hooshmandasl, M. R.
    Ghaini, F. M. Maalek
    Cattani, C.
    [J]. PHYSICS LETTERS A, 2015, 379 (03) : 71 - 76
  • [44] Numerical Solution to the Space-Time Fractional Diffusion Equation and Inversion for the Space-Dependent Diffusion Coefficient
    Chi, Guangsheng
    Li, Gongsheng
    Sun, Chunlong
    Jia, Xianzheng
    [J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2017, 46 (02) : 122 - 146
  • [45] DIFFUSION PHENOMENA FOR THE WAVE EQUATION WITH SPACE-DEPENDENT DAMPING TERM GROWING AT INFINITY
    Sobajima, Motohiro
    Wakasugi, Yuta
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS, 2018, 23 (7-8) : 581 - 614
  • [46] Existence of Solution of Space-Time Fractional Diffusion-Wave Equation in Weighted Sobolev Space
    Zhang, Kangqun
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2020, 2020
  • [47] A Numerical Method Based on the Jacobi Polynomials to Reconstruct an Unknown Source Term in a Time Fractional Diffusion-wave Equation
    Nemati, Somayeh
    Babaei, Afshin
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (05): : 1271 - 1289
  • [48] OSCILLATION OF TIME FRACTIONAL VECTOR DIFFUSION-WAVE EQUATION WITH FRACTIONAL DAMPING
    Ramesh, R.
    Harikrishnan, S.
    Nieto, J. J.
    Prakash, P.
    [J]. OPUSCULA MATHEMATICA, 2020, 40 (02) : 291 - 305
  • [49] Space-dependent source determination in a time-fractional diffusion equation using a local discontinuous Galerkin method
    S. Yeganeh
    R. Mokhtari
    J. S. Hesthaven
    [J]. BIT Numerical Mathematics, 2017, 57 : 685 - 707
  • [50] The time discontinuous space-time finite element method for fractional diffusion-wave equation
    Zheng, Yunying
    Zhao, Zhengang
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 150 (150) : 105 - 116