Probabilistic morphisms and Bayesian nonparametrics

被引:2
|
作者
Jost, Juergen [1 ]
Van Le, Hong [2 ]
Tran, Tat Dat [1 ,3 ]
机构
[1] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
[2] Czech Acad Sci, Inst Math, Zitna 25, Prague 11567 1, Czech Republic
[3] Univ Leipzig, Math Inst, Augustuspl 10, D-04109 Leipzig, Germany
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2021年 / 136卷 / 04期
关键词
D O I
10.1140/epjp/s13360-021-01427-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we develop a functorial language of probabilistic morphisms and apply it to some basic problems in Bayesian nonparametrics. First we extend and unify the Kleisli category of probabilistic morphisms proposed by Lawvere and Giry with the category of statistical models proposed by Chentsov and Morse-Sacksteder. Then we introduce the notion of a Bayesian statistical model that formalizes the notion of a parameter space with a given prior distribution in Bayesian statistics. We revisit the existence of a posterior distribution, using probabilistic morphisms. In particular, we give an explicit formula for posterior distributions of the Bayesian statistical model, assuming that the underlying parameter space is a Souslin space and the sample space is a subset in a complete connected finite dimensional Riemannian manifold. Then we give a new proof of the existence of Dirichlet measures over any measurable space using a functorial property of the Dirichlet map constructed by Sethuraman.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Relatives of the Ewens Sampling Formula in Bayesian Nonparametrics
    Favaro, Stefano
    James, Lancelot F.
    [J]. STATISTICAL SCIENCE, 2016, 31 (01) : 30 - 33
  • [22] Streaming, Distributed Variational Inference for Bayesian Nonparametrics
    Campbell, Trevor
    Straub, Julian
    Fisher, John W., III
    How, Jonathan P.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [23] Interpretation of raw NMR data with Bayesian nonparametrics
    Sgouralis, Ioannis
    Akwataghibe, Kelechi
    Mebrat, Mubark
    Van Horn, Wade D.
    [J]. BIOPHYSICAL JOURNAL, 2024, 123 (03) : 418A - 418A
  • [24] Distributed, partially collapsed MCMC for Bayesian nonparametrics
    Dubeyu, Avinava
    Zhangu, Michael M.
    Xing, Eric P.
    Williamson, Sinead A.
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 3685 - 3694
  • [25] Bayesian nonparametrics in protein remote homology search
    Margelevicius, Mindaugas
    [J]. BIOINFORMATICS, 2016, 32 (18) : 2744 - 2752
  • [26] A Fleming-Viot process and Bayesian nonparametrics
    Walker, Stephen G.
    Hatjispyros, Spyridon J.
    Nicoleris, Theodoros
    [J]. ANNALS OF APPLIED PROBABILITY, 2007, 17 (01): : 67 - 80
  • [27] Bayesian Nonparametrics and Biostatistics: The Case of PET Imaging
    Fall, Mame Diarra
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2019, 15 (02):
  • [28] FELLER OPERATORS AND MIXTURE PRIORS IN BAYESIAN NONPARAMETRICS
    Petrone, Sonia
    Veronese, Piero
    [J]. STATISTICA SINICA, 2010, 20 (01) : 379 - 404
  • [29] Variational Russian Roulette for Deep Bayesian Nonparametrics
    Xu, Kai
    Srivastava, Akash
    Sutton, Charles
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [30] Small variance asymptotics and bayesian nonparametrics for dictionary learning
    Elvira, Clement
    Hong-Phuong Dang
    Chainais, Pierre
    [J]. 2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 1607 - 1611