Distributed, partially collapsed MCMC for Bayesian nonparametrics

被引:0
|
作者
Dubeyu, Avinava [1 ]
Zhangu, Michael M. [2 ]
Xing, Eric P. [3 ]
Williamson, Sinead A. [4 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
[2] Princeton Univ, Princeton, NJ 08544 USA
[3] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[4] Univ Texas Austin, Austin, TX 78712 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bayesian nonparametric (BNP) models provide elegant methods for discovering underlying latent features within a data set, but inference in such models can be slow. We exploit the fact that completely random measures, which commonly-used models like the Dirichlet process and the beta-Bernoulli process can be expressed using, are decomposable into independent sub-measures. We use this decomposition to partition the latent measure into a finite measure containing only instantiated components, and an infinite measure containing all other components. We then select different inference algorithms for the two components: uncollapsed samplers mix well on the finite measure, while collapsed samplers mix well on the infinite, sparsely occupied tail. The resulting hybrid algorithm can be applied to a wide class of models, and can be easily distributed to allow scalable inference without sacrificing asymptotic convergence guarantees.
引用
收藏
页码:3685 / 3694
页数:10
相关论文
共 50 条
  • [1] Streaming, Distributed Variational Inference for Bayesian Nonparametrics
    Campbell, Trevor
    Straub, Julian
    Fisher, John W., III
    How, Jonathan P.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [2] Sparse Partially Collapsed MCMC for Parallel Inference in Topic Models
    Magnusson, Mans
    Jonsson, Leif
    Villani, Mattias
    Broman, David
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (02) : 449 - 463
  • [3] Robustness in Bayesian nonparametrics
    Bose, Sudip
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 82 : 161 - 169
  • [4] Differentially Private Distributed Bayesian Linear Regression with MCMC
    Alparslan, Baris
    Yildirim, Sinan
    Birbil, S. Ilker
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202 : 627 - 641
  • [5] Bayesian nonparametrics for directional statistics
    Binette, Olivier
    Guillotte, Simon
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2022, 216 : 118 - 134
  • [6] Probabilistic morphisms and Bayesian nonparametrics
    Jürgen Jost
    Hông Vân Lê
    Tat Dat Tran
    [J]. The European Physical Journal Plus, 136
  • [7] Special issue on Bayesian nonparametrics
    Ghoshal, Subhashis
    Kleijn, Bas
    van der Vaart, Aad
    van Zanten, Harry
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2015, 166 : 1 - 1
  • [8] QUANTILE PYRAMIDS FOR BAYESIAN NONPARAMETRICS
    Hjort, Nils Lid
    Walker, Stephen G.
    [J]. ANNALS OF STATISTICS, 2009, 37 (01): : 105 - 131
  • [9] Bayesian nonparametrics for single molecule
    Presse, Steve
    [J]. BIOPHYSICAL JOURNAL, 2022, 121 (03) : 533A - 534A
  • [10] Bayesian Nonparametrics for Fluorescence Methods
    Tavakoli, Meysam
    Jazani, Sina
    Sgouralis, Ioannis
    Presse, Steve
    [J]. BIOPHYSICAL JOURNAL, 2019, 116 (03) : 39A - 39A