Distributed, partially collapsed MCMC for Bayesian nonparametrics

被引:0
|
作者
Dubeyu, Avinava [1 ]
Zhangu, Michael M. [2 ]
Xing, Eric P. [3 ]
Williamson, Sinead A. [4 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
[2] Princeton Univ, Princeton, NJ 08544 USA
[3] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[4] Univ Texas Austin, Austin, TX 78712 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bayesian nonparametric (BNP) models provide elegant methods for discovering underlying latent features within a data set, but inference in such models can be slow. We exploit the fact that completely random measures, which commonly-used models like the Dirichlet process and the beta-Bernoulli process can be expressed using, are decomposable into independent sub-measures. We use this decomposition to partition the latent measure into a finite measure containing only instantiated components, and an infinite measure containing all other components. We then select different inference algorithms for the two components: uncollapsed samplers mix well on the finite measure, while collapsed samplers mix well on the infinite, sparsely occupied tail. The resulting hybrid algorithm can be applied to a wide class of models, and can be easily distributed to allow scalable inference without sacrificing asymptotic convergence guarantees.
引用
下载
收藏
页码:3685 / 3694
页数:10
相关论文
共 50 条
  • [31] Bayesian Nonparametrics and Biostatistics: The Case of PET Imaging
    Fall, Mame Diarra
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2019, 15 (02):
  • [32] Bayesian neuroevolution using distributed swarm optimization and tempered MCMC[Formula presented]
    Kapoor, Arpit
    Nukala, Eshwar
    Chandra, Rohitash
    Applied Soft Computing, 2022, 129
  • [33] FELLER OPERATORS AND MIXTURE PRIORS IN BAYESIAN NONPARAMETRICS
    Petrone, Sonia
    Veronese, Piero
    STATISTICA SINICA, 2010, 20 (01) : 379 - 404
  • [34] Variational Russian Roulette for Deep Bayesian Nonparametrics
    Xu, Kai
    Srivastava, Akash
    Sutton, Charles
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [35] Approximate Bayesian computation and MCMC
    Plagnol, V
    Tavaré, S
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2002, 2004, : 99 - 113
  • [36] Large-Scale Distributed Bayesian Matrix Factorization using Stochastic Gradient MCMC
    Ahn, Sungjin
    Korattikara, Anoop
    Liu, Nathan
    Rajan, Suju
    Welling, Max
    KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 9 - 18
  • [37] Revisiting Bayesian Autoencoders With MCMC
    Chandra, Rohitash
    Jain, Mahir
    Maharana, Manavendra
    Krivitsky, Pavel N.
    IEEE ACCESS, 2022, 10 : 40482 - 40495
  • [38] Small variance asymptotics and bayesian nonparametrics for dictionary learning
    Elvira, Clement
    Hong-Phuong Dang
    Chainais, Pierre
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 1607 - 1611
  • [40] Editor’s note: special section on Bayesian Nonparametrics
    Statistics and Computing, 2017, 27 : 1 - 1