Distributed, partially collapsed MCMC for Bayesian nonparametrics

被引:0
|
作者
Dubeyu, Avinava [1 ]
Zhangu, Michael M. [2 ]
Xing, Eric P. [3 ]
Williamson, Sinead A. [4 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
[2] Princeton Univ, Princeton, NJ 08544 USA
[3] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[4] Univ Texas Austin, Austin, TX 78712 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bayesian nonparametric (BNP) models provide elegant methods for discovering underlying latent features within a data set, but inference in such models can be slow. We exploit the fact that completely random measures, which commonly-used models like the Dirichlet process and the beta-Bernoulli process can be expressed using, are decomposable into independent sub-measures. We use this decomposition to partition the latent measure into a finite measure containing only instantiated components, and an infinite measure containing all other components. We then select different inference algorithms for the two components: uncollapsed samplers mix well on the finite measure, while collapsed samplers mix well on the infinite, sparsely occupied tail. The resulting hybrid algorithm can be applied to a wide class of models, and can be easily distributed to allow scalable inference without sacrificing asymptotic convergence guarantees.
引用
收藏
页码:3685 / 3694
页数:10
相关论文
共 50 条
  • [21] Editorial overview: Special issue on Bayesian nonparametrics Subhashis Ghosal Guest editor of the special issue on Bayesian nonparametrics
    Ghosal, Subhashis
    ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (02): : 3217 - 3218
  • [22] Bayesian Nonparametrics for Sparse Dynamic Networks
    Naik, Cian
    Caron, Francois
    Rousseau, Judith
    Teh, Yee Whye
    Palla, Konstantina
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT V, 2023, 13717 : 191 - 206
  • [23] Introduction to the special issue on Bayesian Nonparametrics
    Benavoli, Alessio
    Lijoi, Antonio
    Mira, Antonietta
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 83 : 193 - 195
  • [24] Bayesian nonparametrics for microphone array processing
    Okuno, Hiroshi G. (okuno@kuis.kyoto-u.ac.jp), 1600, Institute of Electrical and Electronics Engineers Inc., United States (22):
  • [25] New tools for consistency in Bayesian nonparametrics
    Salinetti, G
    BAYESIAN STATISTICS 7, 2003, : 369 - 384
  • [26] Relatives of the Ewens Sampling Formula in Bayesian Nonparametrics
    Favaro, Stefano
    James, Lancelot F.
    STATISTICAL SCIENCE, 2016, 31 (01) : 30 - 33
  • [27] Interpretation of raw NMR data with Bayesian nonparametrics
    Sgouralis, Ioannis
    Akwataghibe, Kelechi
    Mebrat, Mubark
    Van Horn, Wade D.
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 418A - 418A
  • [28] Bayesian nonparametrics in protein remote homology search
    Margelevicius, Mindaugas
    BIOINFORMATICS, 2016, 32 (18) : 2744 - 2752
  • [29] A Fleming-Viot process and Bayesian nonparametrics
    Walker, Stephen G.
    Hatjispyros, Spyridon J.
    Nicoleris, Theodoros
    ANNALS OF APPLIED PROBABILITY, 2007, 17 (01): : 67 - 80
  • [30] Distributed MCMC Inference for Bayesian Non-parametric Latent Block Model
    Khoufache, Reda
    Belhadj, Anisse
    Azzag, Hanene
    Lebbah, Mustapha
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT I, PAKDD 2024, 2024, 14645 : 271 - 283