Characterization and Modeling of PIDX Parallel I/O for Performance Optimization

被引:10
|
作者
Kumar, Sidharth [1 ]
Saha, Avishek [1 ]
Vishwanath, Venkatram [2 ]
Carns, Philip [2 ]
Schmidt, John A. [1 ]
Scorzelli, Giorgio [1 ]
Kolla, Hemanth [4 ]
Grout, Ray [6 ]
Latham, Robert [2 ]
Ross, Robert [2 ]
Papka, Michael E. [2 ,4 ,5 ]
Chen, Jacqueline [4 ]
Pascucci, Valerio [1 ,3 ]
机构
[1] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA
[2] Argonne Natl Lab, Argonne, IL USA
[3] Pacific Northwest Natl Lab, Richland, WA USA
[4] Sandia Natl Labs, Livermore, CA USA
[5] No Illinois Univ, De Kalb, IL 60115 USA
[6] Natl Renewable Energy Lab, Golden, CO USA
关键词
I/O & Network Characterization; Performance Modeling;
D O I
10.1145/2503210.2503252
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Parallel I/O library performance can vary greatly in response to user-tunable parameter values such as aggregator count, file count, and aggregation strategy. Unfortunately, manual selection of these values is time consuming and dependent on characteristics of the target machine, the underlying file system, and the dataset itself. Some characteristics, such as the amount of memory per core, can also impose hard constraints on the range of viable parameter values. In this work we address these problems by using machine learning techniques to model the performance of the PIDX parallel I/O library and select appropriate tunable parameter values. We characterize both the network and I/O phases of PIDX on a Cray XE6 as well as an IBM Blue Gene/P system. We use the results of this study to develop a machine learning model for parameter space exploration and performance prediction.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A study of real world I/O performance in parallel scientific computing
    Kimpe, Dries
    Lani, Andrea
    Quintino, Tiago
    Vandewalle, Stefan
    Poedts, Stefaan
    Deconinck, Herman
    APPLIED PARALLEL COMPUTING: STATE OF THE ART IN SCIENTIFIC COMPUTING, 2007, 4699 : 871 - +
  • [42] A Checkpoint of Research on Parallel I/O for High-Performance Computing
    Boito, Francieli Zanon
    Inacio, Eduardo C.
    Bez, Jean Luca
    Navaux, Philippe O. A.
    Dantas, Mario A. R.
    Denneulin, Yves
    ACM COMPUTING SURVEYS, 2018, 51 (02)
  • [43] Dynamic Model-driven Parallel I/O Performance Tuning
    Behzad, Babak
    Byna, Surendra
    Wild, Stefan M.
    Prabhat
    Snir, Marc
    2015 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING - CLUSTER 2015, 2015, : 184 - 193
  • [44] ChemIO: high performance parallel I/O for computational chemistry applications
    Pacific Northwest Natl Lab, Richland, United States
    Int J High Perform Comput Appl, 3 (345-363):
  • [45] ChemIO: High performance parallel I/O for computational chemistry applications
    Nieplocha, J
    Foster, I
    Kendall, RA
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 1998, 12 (03): : 345 - 363
  • [46] I/O data mapping in ParFiSys: Support for high-performance I/O in parallel and distributed systems
    Carretero, Jesus
    Perez, Fernando
    de Miguel, Pedro
    Garcia, Felix
    Alonso, Luis
    Lecture Notes in Computer Science, 1996, 1123
  • [47] Energy-Performance Modeling and Optimization of Parallel Computing in On-Chip Networks
    Zhang, Shuai
    Liu, Zhiyong
    Fan, Dongrui
    Song, Fonglong
    Zhang, Mingzhe
    2013 12TH IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2013), 2013, : 879 - 886
  • [48] MOANA: Modeling and Analyzing I/O Variability in Parallel System Experimental Design
    Cameron, Kirk W.
    Anwar, Ali
    Cheng, Yue
    Xu, Li
    Li, Bo
    Ananth, Uday
    Bernard, Jon
    Jearls, Chandler
    Lux, Thomas
    Hong, Yili
    Watson, Layne T.
    Butt, Ali R.
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2019, 30 (08) : 1843 - 1856
  • [49] Hadoop I/O Performance Improvement by File Layout Optimization
    Fujishima, Eita
    Nakashima, Kenji
    Yamaguchi, Saneyasu
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (02): : 415 - 427
  • [50] ATLAS I/O performance optimization in as-deployed environments
    Maier, T.
    Benjamin, D.
    Bhimji, W.
    Elmsheuser, J.
    Van Gemmeren, P.
    Malon, D.
    Krumnack, N.
    21ST INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP2015), PARTS 1-9, 2015, 664