Characterization and Modeling of PIDX Parallel I/O for Performance Optimization

被引:10
|
作者
Kumar, Sidharth [1 ]
Saha, Avishek [1 ]
Vishwanath, Venkatram [2 ]
Carns, Philip [2 ]
Schmidt, John A. [1 ]
Scorzelli, Giorgio [1 ]
Kolla, Hemanth [4 ]
Grout, Ray [6 ]
Latham, Robert [2 ]
Ross, Robert [2 ]
Papka, Michael E. [2 ,4 ,5 ]
Chen, Jacqueline [4 ]
Pascucci, Valerio [1 ,3 ]
机构
[1] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA
[2] Argonne Natl Lab, Argonne, IL USA
[3] Pacific Northwest Natl Lab, Richland, WA USA
[4] Sandia Natl Labs, Livermore, CA USA
[5] No Illinois Univ, De Kalb, IL 60115 USA
[6] Natl Renewable Energy Lab, Golden, CO USA
关键词
I/O & Network Characterization; Performance Modeling;
D O I
10.1145/2503210.2503252
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Parallel I/O library performance can vary greatly in response to user-tunable parameter values such as aggregator count, file count, and aggregation strategy. Unfortunately, manual selection of these values is time consuming and dependent on characteristics of the target machine, the underlying file system, and the dataset itself. Some characteristics, such as the amount of memory per core, can also impose hard constraints on the range of viable parameter values. In this work we address these problems by using machine learning techniques to model the performance of the PIDX parallel I/O library and select appropriate tunable parameter values. We characterize both the network and I/O phases of PIDX on a Cray XE6 as well as an IBM Blue Gene/P system. We use the results of this study to develop a machine learning model for parameter space exploration and performance prediction.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [21] Exploiting shared memory to improve parallel I/O performance
    Hastings, Andrew B.
    Choudhary, Alok
    RECENT ADVANCES IN PARALLEL VIRTUAL MACHINE AND MESSAGE PASSING INTERFACE, 2006, 4192 : 212 - 221
  • [22] Impact of spatial layout of jobs on parallel I/O performance
    Lewis & Clark Coll, Portland, OR, United States
    Proc Annu Workshop I/O Parall Distrib Syst, (45-56):
  • [23] Observing Parallel Phase and I/O Performance Using TAU
    Shende, Sameer
    Malony, Allen
    Morris, Alan
    Cronk, David
    PROCEEDINGS OF THE HPCMP USERS GROUP CONFERENCE 2008, 2008, : 431 - +
  • [24] PERFORMANCE EVALUATION OF A PARALLEL I/O SUBSYSTEM FOR HYPERCUBE MULTICOMPUTERS
    GHOSH, J
    GOVEAS, KD
    DRAPER, JT
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1993, 17 (1-2) : 90 - 106
  • [25] Rethinking key-value store for parallel I/O optimization
    Kougkas, Anthony
    Eslami, Hassan
    Sun, Xian-He
    Thakur, Rajeev
    Gropp, William
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2017, 31 (04): : 335 - 356
  • [26] Optimization Of Parallel I/O For Cannon's algorithm Based On Lustre
    Li, Yunchun
    Li, Hongda
    2012 11TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING & SCIENCE (DCABES), 2012, : 31 - 35
  • [27] An optimization of Apriori algorithm through the usage of parallel I/O and hints
    Pérez, MS
    Pons, RA
    García, F
    Carretero, J
    Córdoba, ML
    ROUGH SETS AND CURRENT TRENDS IN COMPUTING, PROCEEDINGS, 2002, 2475 : 449 - 452
  • [28] Rethinking Key-Value Store for Parallel I/O Optimization
    Yin, Yanlong
    Kougkas, Antonios
    Feng, Kun
    Eslami, Hassan
    Lu, Yin
    Sun, Xian-He
    Thakur, Rajeev
    Gropp, William
    2014 INTERNATIONAL WORKSHOP ON DATA-INTENSIVE SCALABLE COMPUTING SYSTEMS (DISCS), 2014, : 33 - 40
  • [29] Performance research of the distributed parallel server system with distributed parallel I/O interface
    Liu, Xin-Song
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2002, 30 (12): : 1808 - 1810
  • [30] Parallel I/O
    Schikuta, E
    Wanek, H
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2001, 15 (02): : 162 - 168